Probability and Induction

‘Probability’ is an ambiguous word. In the history of ideas, it has been used with
many different senses, giving rise to different concepts of probability. Being
associated with games of chance and gambling, death tolls and insurance policies,
statistical inferences and the chancy world of modern physics, probabilities have been
made susceptible to different interpretations. These interpretations may reflect on
probabilities the objectivity of logic or the subjectivity of a person’s belief and lack of
knowledge, the frequencies of observed data or the real tendency of a system to yield
an outcome. Commonly, but not always, they are considered to be interpretations of
the mathematical concept of probability, which by itself and in itself has no empirical
meaning.

This article attempts to present the different meanings of ‘probability” and provide an
introductory topography of the conceptual landscape. Without trying to provide a
history of the idea, historical elements are considered. Also, realizing that an
exhaustive treatment would be difficult, we are focusing, mainly, on the discussion of
induction and confirmation. The article is intended as a companion to the article on
the Problem of Induction (Psillos and Stergiou, 2022), in which Hans Reichenbach’s
major contribution to the interpretation of probability theory is discussed.
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1. Elements of Probability and its Interpretations

a. On Mathematical Probability

In the monograph Foundations of the Theory of Probability, first published in
German in 1933, the Soviet mathematician A. N. Kolmogorov presented the definitive
form of what in the early twenty-first century is regarded as the axiomatization of
mathematical probability. The challenge of axiomatization has been set by D. Hilbert
in the sixth of his famous twenty-three problems at the beginning of twentieth century
(1902)“to treat in the same manner [as geometry], by means of axioms, those physical
sciences in which mathematics plays an important part; in the first rank are the theory
of probabilities and mechanics.”

Kolmogorov, addressing the problem, developed a theory of probability as a
mathematical discipline “from axioms in exactly the same way as Geometry and
Algebra” (1933:1). In his axiomatization, probability and other primary concepts,
devoid of any empirical meaning, are defined implicitly in terms of consistent and
independent axioms in a set-theoretic setting. Thus, modern mathematical probability
theory grew within the branch of mathematics called measure theory.

Kolmogorov called elementary theory of probability “that part of the theory in
which we have to deal with probabilities of only a finite number of events” (ibid). A
random event is an element of an event space, the latter being formalized by the set-
theoretic concept of field, introduced by Hausdorff in Set Theory (1927). A field is a
non-empty collection of subsets § of a given non-empty set I" that has the following
properties:

(a) for every pair of elements, A, B of §, their union, A U B, belongs in §;
(b) for every element A of S, its complement with respectto I', A = I'\4, isin S.

In probability theory the set I is called sample space.
To understand the above formalization, consider the simple example of tossing a
die. Let I' be the set of the six possible outcomes:

E{,E, E3 E4,Es, Eg.
The collection S of all 2 = 64 subsets of r,

@1 {El}, {EZ}J P{E6}1 {ElyEZ}’ {E1JE3}---9{E51 E6}l {EllEZI E3}9 [EEY {E4I ES;E6}1
{El,Ez,E3,E4}, ---a{E3;E4:E5;E6}v {E11E21E3’E4' E5},..., {EZ'ES'E4’E5JE6}i
{E1, E2, E3, Eq, Es, Eg},

satisfies conditions (a) and (b); S is a field. The subsets of I" represent different
possibilities that can be realized in tossing a single die: the empty set, @, is a random
event that represents an impossible happening. The singletons, {E},{E,}, ...{Es}, are
the elementary events, since any other random event (except @) is a disjunction of
these events, expressed by taking the set-theoretic union of the respective singletons.
Finally, I' = {E,, E;, E5, E4, Es, E¢} is an event that represents the realization of any
possibility.



A function from a field § to the set of real numbers, R,
p:S - R,
is called a probability function on &, if it satisfies the following axioms:

i. p(4)=0,forAeES;
i.  p)=1,
iii. p(AUB)=p(A)+p(B), forAnB = ¢;

In the simple example of tossing a die, a probability function p would assign a
non-zero real number p(E) to each element E of §, according to axiom (i). Axiom (ii)
requires that the random event which describes any possible outcome has probability
1, p(I') = 1. Axiom (iii), commonly called finite additivity property, tells us how to
calculate the probability value of any random event from the probability values of
elementary events, for instance,

p({E1, Ez, E3, Es}) = p({E, E2}) + p({E5, E4}) = p({E1D) + p({E2D) +
p({Es}) + p({E4}).

Notice that there are infinitely many admissible probability functions on the event

space of the tossing of a die and that only one of them corresponds to a fair die, the
1

one with p({E;}) = <

Problems concerning a countably infinite number of random events require an
additional axiom and the formalization of the event space as a o-field. A field § is a o-
field if and only if it satisfies the following condition: (c) for every infinite sequence
of elements of §, {4, },.en, the countably infinite union of these sets, U;—; 4, belongs
inS.

Every field § of finite cardinality is a o-field, since any infinite sequence in §
consists of a finite number of different subsets of I and their union is always in S,
according to (a). Yet this may not be the case if the field is constructed from a
countably infinite set I'. Imagine, for instance, a die of infinite faces, where the set I'
of possible outcomes is

E{,Ey E;3,...
Let the collection § consist of subsets A of I', which are either of finite cardinality or
their complement, A° = I'\A4, is of finite cardinality:
§ = {A c I': A is finite or A€ is finite }.
It is easy to show that S is a field. Yet it is not a o-field, since the set

|

neN
which is the infinite union of {E,,}, n € N, does not belongto S.

A probability function on a c-field S,

p:S - R,
satisfies the following axioms:
i p(A)=0,fordeESs;
i p()=1;
. p(Upz14n) =p(41) + -+ pAy) + - = Lz p(4n)  for AN A; = @, for
i #].



It is evident that axiom (iii"), commonly called the countable additivity property of
the probability function, extends finite additivity to the case of a countably infinite
family of events. Originally, Kolmogorov suggested a different axiom, equivalent to
countable additivity, the axiom of continuity (1933: 14):

iii”". For a monotone sequence of events {4,,},,en, With A, 2 A,,,1,n = 1 such
that No—1 4, = 0, p(4,)) — 0 whenn — oo.
In what follows, there are many interpretations of mathematical probabilities that are
actually interpretations of elementary probability theory and that face serious
problems when applied to mathematical probability theory formulated in o-fields.

A special probability function p(¢]A): S — R can be defined on S, if one is given a

function p on § and a random event A € S such that p(4) # 0:

p(BNA) ¢
p(B|A) = oA orBES
p(+]A) determines the conditional probability p(B|A) of some event B € § given an
event A, while p(B) is the unconditional probability of B.

The conditional probability given an event A € § of any random event B € S,
p(B|A), can be understood as unconditional probability of an event D, p,(D),
determined by a probability function p, on a reduced event space S, consisting of
subsets of the event A € § that one conditionalizes on; namely, p,: S, = R, p,(D) =
p(B|A), where S, ={D:D =B nNA, forB € §}.

In the tossing of a fair die example, the conditional probability of any outcome,
event B = {E;},i = 1, ...6, given that it is an even number, event A = {E,, E,, E¢}, is
provided by the conditional probability function p(e|A), defined on the o-field S.

Since the die is fair, p({E;}) = % for i=1,..,6;als0, p(BNA) = % for B =

{E;}, i = 2,4,6, while p(B n A) = 0 otherwise; using the finite additivity axiom,
p(4) = pUE,}) + pUED) + p({Ee}) == +=+= =50, p(B|A) =, for B =
{E;}, i = 2,4,6,and p(B|A) = 0 otherwise. Now, consider the reduced event space S,

consisting of the subsets of {E,, E,4, E¢}. Since the die is fair, p,({E;}) = é for i =
2,4,6 and, p,(B) = § = p(B|A) for B = {E;}, i = 2,4,6, while p4(®) = 0 = p(B|4)
otherwise.

Kolmogorov’s axiomatic account, the standard mathematical textbook account of
probability theory, explicates the concepts of random event and event space in terms
of set theory. Yet, Boole proposed

another form under which all questions in the theory of probabilities may be
viewed; and this form consists in substituting for events the propositions
which assert that those events have occurred, or will occur; and viewing the
element of numerical probability as having reference to the truth of those
propositions, not to the occurrence of the events concerning which they make
assertion. (1853:190)
This formulation of probability theory is very common in philosophical contexts,
especially when discussing inductive inference. It typically concerns elementary
probability theory, presented in the language of sentential logic. Elements of this
account can be found in Appendix 6.a, and the reader may also consult (Howson and
Urbach 2006: Ch.2). This article presents just a few propositions of elementary
probability theory as formulated in this setting that will be useful in what follows:



e Probability 1 is assigned to tautologies and probability 0 to contradictions. All
other sentences have probability values between 0 and 1.
e The probability of the negation of sentence a is 1 — p(a).
e The probability of the disjunction of two inconsistent sentences a, b is the sum of
probabilities of the sentences:
p(aV b) =p(a) + p(b).
e The conditional probability of a sentence a given the truth of a sentence b is

p(a A b)
p(alb) (D) ,0(b) # 0.
e Bayes’s Theorem. The posterior probability of a hypothesis h — that is, the
probability of h conditional on evidence e — is
p(elh)p(h)
p(hle) ===

where p(e|h) is called the likelihood of the hypothesis and expresses the
probability of the evidence conditional on the hypothesis; p(h) is called the prior
probability of the hypothesis; and p(e) is the probability of the evidence.

,where p(h),p(e) > 0,

This brief introduction to mathematical probability concludes with the following
instructive application of Bayes’s theorem. A factory uses three engines A, A,, A3 t0
produce a product. The first engine, A;, produces 1000 items, the second, 4,, 2000
items and the third, A5, 3000 items, per day. Of these items, 4%, 2%, and 4%,
respectively, are faulty. What is the probability of a faulty product having been
produced by a given engine in a day? Let h; be the hypothesis: “A product has been
produced by engine A4; in a day”, for i = 1,2,3, and e: “A faulty product has been

produced in a day”. Then the prior probabilities of h; are, p(h;) = % ; p(hy) =
g;p(hg) =§ and the likelihoods are p(el|h,) = 0.04, p(e|h,) = 0.02; p(elhs) =
0.04, respectively. Using the theorem of total probability (see Appendix 6a), once can
calculate p(e) = p(h)p(elh) + p(ha)p(elhs) + p(ha)p(elhs) = ¢~ 0.04 + 3
0.02 + % +0.04 = % By applying Bayes’s theorem one obtains the posterior
probability for each hypothesis, p(h,|e) = 0.20; p(h,|e) = 0.20; p(hzle) = 0.60,

that is, the probability of a faulty product to have been produced by a given engine in
a day.

b. Interpretations of probabilities

As any other part of mathematics, probability theory does not have on its own any
empirical meaning and cannot be applied to games of chance, to the study of physical
or biological systems, to risk evaluation or insurance policies, and, in general, to
empirical science and practical issues, unless one provides an interpretation of its
axioms and theorems. This is what Wesley Salmon (1966: 63) dubbed the
philosophical problem of probability:

It is the problem of finding one or more interpretations of the probability
calculus that yield a concept of probability, or several concepts of probability,
which do justice to the important applications of probability in empirical
science and in practical affairs. Such interpretations whether one or several
would provide an explication of the familiar notion of probability.



Salmon suggested three criteria that an interpretation of probability is desirable to
satisfy. The first one is called admissibility, and it requires that the probability
concepts satisfy the mathematical relations of the calculus of probability, that is, the
axioms of Kolmogorov. This is a minimal requirement for the concept of probability
to be an interpretation of mathematical probability, but not a trivial one, since
countable additivity may be a problem for some interpretations of probability (see
2.a.i and 2.b), while in others, Kolmogorov’s axioms are supposed to follow naturally
from the practice of gambling (see 4.a and 4.b). The second criterion is
ascertainability. This requires that there should be a method by which, in principle at
least, one can ascertain values of probabilities. If it is impossible to find out what the
values of probability are, then the concept of probability is useless. Again, not all
suggested interpretations satisfy this requirement. According to Salmon,
Reichenbach’s frequency interpretation fails to meet this requirement (1966: 89ff.).
Finally, applicability is the third criterion: a concept of probability should be
applicable, that is, it should have a practical predictive significance. The force of this
criterion is manifested in everyday life, in science as well as in the logical structure of
science. The concept of scientific confirmation provides a venerable example of
application of probability theory.

Interpretations of probability theory may be classified under two general families:
inductive and physical probability. The classical, the logical, and the subjective
interpretations of probability are deemed inductive, while the frequency and the
propensity interpretations yield physical probabilities. To illustrate the difference
between inductive and physical probability, an example may be instructive (Maher,
2006). Think of a coin that you know is either two-headed or two-tailed, but you have
no information about which it is. What is the probability that it would land heads, if

tossed? One possible answer would be that the probability is % , since there are two

possibilities, and there is no evidence which one is going to be realized. Another
answer would say that the probability is either 0, if the coin is two-tailed, or 1, if two-

headed, but it is not known which. Maher suggests that if % occurs as a natural

answer, then one understands ‘probability’ in the sense of inductive probability while
the sense in which ‘0 or 1’ occurs as a natural answer is physical probability. What is
the difference between the two meanings? Inductive probability is relative to available
evidence, and it does not depend on how the unknown part of the world is, that is, on
unknown facts of the matter. Thus, if in this example one comes to know that the coin
tossed has a head on one side, one should revise the probability estimate in the light of
new evidence and claim that now the inductive probability is 1. On the other hand,
physical probability is not relative to evidence, and it depends on facts that may be
unknown. This is why the further piece of information entertained does not alter the
physical probability (it is still ‘0 or 1°).

2. What is Probability?

a. The Classical Interpretation

Pierre Simon Laplace proposed what has come to be known as the classical
interpretation of probability in his work The Analytical Theory of Probabilities
(1812) and in the much shorter A Philosophical Essay on Probabilities (1814), a book
based on a lecture on probabilities he delivered in 1795. His deterministic view of the
universe, Laplacian determinism, is well known. Not only did he believe that every
aspect of the world, any event that takes place in the universe, is governed by the



principle of sufficient reason “the evident principle that a thing cannot occur without
a cause which produces it” (1814: 3) but also that “[w]e ought...to regard the present
state of the universe as the effect of its anterior state and as the cause of the one which
is to follow” (1814: 4). Moreover, he claimed that the universe is knowable, in
principle, and that a supreme intelligence that
could comprehend all the forces by which nature is animated and the
respective situation of the beings who compose it—an intelligence sufficiently
vast to submit these data to analysis—it would embrace in the same formula
the movements of the greatest bodies of the universe and those of the lightest
atom. (ibid)
However, human intelligence is weak. It cannot provide an adequate unified picture of
the world and subsume the macroscopic and microscopic realm under the province of
a single formula. Nor can it give the causes of all events that occur and render them
predictable. Thus, ignorance emerges as an expression of human limitation. Laplace
stressed that“the curve described by a simple molecule of air or vapor is regulated in a
manner just as certain as the planetary orbits; the only difference between them is that
which comes from our ignorance” (1814: 6).

Due to ignorance of the true causes, he claimed, people believe in final causation, or
they make chance (‘hazard’ in Laplacian terminology) an objective feature of the
world. “[B]ut these imaginary causes” explains Laplace, “have gradually receded with
the widening bounds of knowledge and disappear entirely before sound philosophy,
which sees in them only the expression of our ignorance of the true causes” (1814: 3).

i. Probability as a Measure of Ignorance
In this context, Laplace interpreted probability as a measure of our ignorance, making
it dependent on evidence one is aware of or on a lack of such evidence:

Probability is relative, in part to this ignorance, in part to our knowledge. We
know that of three or a greater number of events a single one ought to occur; but
nothing induces us to believe that one of them will occur rather than the others.
In this state of indecision, it is impossible for us to announce their occurrence
with certainty. It is, however, probable that one of these events, chosen at will,
will not occur because we see several cases equally possible which exclude its
occurrence, while only a single one favors it. (1814: 6)

The measure of probability of an event is determined by considering equally
probable cases that either favor or exclude its occurrence, and the concept of
probability is reduced to the notion of equally probable events:

The theory of chance consists in reducing all the events of the same kind to a
certain number of cases equally possible, that is to say, to such as we may be
equally undecided about in regard to their existence, and in determining the
number of cases favorable to the event whose probability is sought. The ratio of
this number to that of all the cases possible is the measure of this probability,
which is thus simply a fraction whose numerator is the number of favorable
cases and whose denominator is the number of all the cases possible. (1814: 6-
7)



Laplace claims that the probability of an event is the ratio of the number of favorable
cases to that of all possible cases. And this principle of the calculus of probability has
for Laplace the status of a definition: “The first of these principles is the definition
itself of probability, which, as has been seen, is the ratio of the number of favorable
cases to that of all the cases possible” (1814: 11).

In the jargon of the mathematical theory of probability, one may consider a
partition {A;},-1., Of the event space §, that is, a family of mutually exclusive
subsets exhaustive of the sample space, 4; N A; = @ and Uj_; Ay = I' — and assume
equal probability for all random events A, p(4;) = p(4;), forevery 1 < i,j < n.

Now, for every event E that is decomposable into any sub-family {Akl}lzl...m c

{Aidk=1.n
m
E = U Akl’
=1

m number of favorable cases for E

E —_— —
p(E) n number of possible cases.

the probability of E is,

One can easily show that a function defined in this way satisfies the axioms of
elementary probability theory: p(4) > 0,forA € S; p(I') =1, p(AUB) =p(A) +
p(B), for AN B = @. Hence, Laplace’s first principle suggests an admissible, in
Salmon’s sense, interpretation of the elementary theory.

Countable additivity (axiom iii"), on the other hand, is not satisfied for an event
space of countably infinite cardinality. To show this, consider an infinite partition
{A1} k=1 and assign equal probability to all A;s, p(4,) = 0. Then by employing
axioms i” and ii” along with the equal probability condition and countable additivity
(axiom iii"), one is led to the followmg absurdity:

0

1= p(r) — p(UA ) —Count.Addit. zp(Ak) = or

Hence, classical interpretation is not an admissible interpretation of the mathematical
theory of probability in general. It singles out only certain models of probability
theory (elementary theory) in which the cardinality of the event space is finite.

Another criticism raised against the classical interpretation (Hajek, 2019) is related
to its applicability. The classical interpretation of probability allows only rational-
valued probability functions, defined in terms of a ratio of integers. However, in many
branches of science, theories (for instance, quantum mechanics) assign to events
irrational probability values. In these cases, one cannot interpret probability values in
terms of the ratio of the number of favorable cases over the total number of cases.

As has already been discussed, in the definition of probability, Laplace
presupposes that all cases are equally probable. This fact gives rise to a well-known
criticism, namely, that of circularity of the definition of probability: if the relation of
equiprobability of two events depends conceptually on what probability is, then the
definition of probability is circular. To avoid this criticism, the Soviet mathematician
and student of Kolmogorov Boris Gnedenko considered the notion of equal
probability a primitive notion “which is... basic and is not subject to a formal
definition” (1978: 23).



Laplace, in several places, wrote about “equally possible” cases as if ‘possibility’
and ‘probability’ were terms that could be used interchangeably. To assume that is to
commit a category mistake, as Hayek has pointed out, since possibilities do not come
in degrees. Nevertheless, as shall be seen in section 3.a.1, the connection between
possibility and probability can be established in terms of Keynes’s principle of
indifference. The same section discusses the paradoxes of indifference that also
undermine Laplace’s idea of probability.

b. Probabilities as Frequencies

The frequency interpretation of probability can be traced back to the work of R. L.
Ellis and John Venn in the middle of nineteenth century, and it has been described as
“a ‘British Empiricist’ reaction to the ‘Continental rationalism’ of Laplace” (Gillies
2000: 88). In Ellis’s article “On the Foundations of the Theory of Probability” (1842),
the rudiments of this interpretation are identified: “If the probability of a given event
be correctly determined, the event will, on a long run of trials, tend to recur with
frequency proportional to this probability.”

Venn presented his own account, a few years later, in 1888, in The Logic of Chance:
“[W]e may define the probability or chance... of the event happening in that
particular way as the numerical fraction which represents between the two different
classes in the long run” (1888: 163).

The real boost, however, for the frequency interpretation was given in the early
twentieth century, with the advent of Logical Empiricism, by Richard von Mises in
Vienna, and Hans Reichenbach in Berlin. The first, in his work Probability, Statistics
and Truth, published in German in 1928, provides a thorough mathematical and
operationalist account of probability theory as empirical science, like empirical
geometry and the science of mechanics. The account has been presented more
rigorously in von Mises’ posthumously published work, entitled Mathematical Theory
of Probability and Statistics (1964). Reichenbach presented his mature views on
probability in the work The Theory of Probability: an inquiry into the logical and
mathematical foundations of the calculus of probability, originally published in
Turkey in 1935. In this work, Reichenbach attempted to establish a probability logic,
based on the relation of probability implication, which is governed by four axioms.
Relative frequencies of sub-series of events in a larger series are interpreted as
probabilities, and they are shown to satisfy the axioms of probability logic. However,
Reichenbach’s milestone contribution concerns the connection between probability
theory and the problem of induction. This section focuses mainly on the frequency
interpretation of probability as suggested by von Mises, while for Reichenbach’s
views the reader may consult the IEP article on The Problem of Induction (Psillos and
Stergiou, 2022).

Von Mises claimed that the subject matter of probability theory are repetitive
events — “same event that repeats itself again and again” - and mass phenomena — “a
great number of uniform elements... [occurring] at the same time” (1928: 11).
Probability, according to von Mises, is defined in terms of a collective, a concept
which “denotes a sequence of uniform events or processes which differ by certain
observable attributes, say colors, numbers or anything else” (1928: 12). For example,
take a plant coming from a given seed as a single instance of a collective which
consists of a large number of plants coming from the given type of seed. All members
of the collective differ from each other with respect to some attribute, say the color of



the flower or the height of the plant. In the case of tossing a die, the collective consists
of the long series of tosses, and the attribute which distinguishes the instances is the
number that appears on the face of the die. The mathematical representation of such
finite empirical collectives is given in terms of their idealized counterpart, the infinite
ordered sequences of events, which exhibit attributes that are subsets of the attribute
space of the collective (which is no different from what has been called sample
space).

Yet, to be an empirical collective, a sequence of events should satisfy two empirically
well-confirmed laws that dictate the mathematical axioms of probability theory in the
ideal case of the infinite sequences. The first law, dubbed by Keynes (1921: 336) the
Law of Stability of Statistical Frequencies, requires that “the relative frequencies of
certain attributes become more and more stable as the number of observations is
increased”’(von Mises 1928: 12).

Thus, if 02 is the attribute space, A € 2 is an attribute and m(A) is the number of
manifestations of A in the first n members of the collective, the relative frequency,

@, tends to a fixed number as the number n of observations increases. According to

von Mises, the Law of Stability of Statistical Frequencies is confirmed by
observations in all games of chance (dice, roulette, lotteries, and so forth), in data
from insurance companies, in biological statistics, and so on (von Mises 1928: 16-21).
This empirical law gives rise to the axiom of convergence for infinite sequences of

events: for an arbitrary attribute A of a collective C, %‘l?o %A) exists.

This law can be traced back to the views of von Mises’s predecessors. For
instance, Venn thought that probability is about “a large number or succession of
objects, or... series of them” (1888: 5). This series should be “indefinitely numerous,”
and it should “combine individual irregularity with aggregate regularity” (1888: 4).
All series, for Venn, initially exhibit irregularity, if one considers only their first
elements, while, subsequently, a regularity may be attested. This regularity, however,
can be unstable, and it can be destroyed in the long run, in the “ultimate stage” of the
series. According to Venn, a series is of the fixed type if it preserves the uniformity,
while it is of the fluctuating type if “the uniformity is found at last to fluctuate” (1888:
17). Probability is defined only for series of the fixed type; if a series is of the
fluctuating type, it is not the subject of science (1888: 163). But what does it mean, in
terms of relative frequencies, that a series is of the fixed type? “The one [fixed type]
tends without any irregular variation towards a fixed numerical proportion in its
uniformity” (ibid).

In more detail: “As we keep on taking more terms of the series we shall find the
proportion still fluctuating a little, but its fluctuations will grow less. The proportion,
in fact, will gradually approach towards some fixed numerical value, what
mathematicians term its limit” (1888: 164).

The second presupposition for a sequence to be a collective is an original
contribution of von Mises. Apart from the existence of limiting relative frequencies in
infinite sequences, he demanded the sequence to be random in the sense that there is
no rule-governed selection of a subsequence of the original sequence that would yield
a different relative frequency of the attribute in question from the one obtained in the
original sequence. In von Mises’s own words:

10



[T]hese fixed limits are not affected by place selection. That is to say, if we
calculate the relative frequency of some attribute not in the original sequence,
but in a partial set, selected according to some fixed rule, then we require that
the relative frequency so calculated should tend to the same limit as it does in
the original set... The fulfilment of the condition... will be as the Principle of
Randomness or the Principle of Impossibility of a Gambling System. (1957: 29)

In a more detailed account of how the subsequence is obtained by place selection,
von Mises (1964: 9) explained that, in inspecting all elements of the original
sequence, the decision to keep the nth element in or to reject it from the subsequence
depends either on the ordinal number n of this element or on the attributes manifested
in the (n — 1) preceding elements. This decision does not depend on the attribute
exhibited by the nth or by any subsequent element.

Von Mises suggested that one should understand the Principle of Impossibility of a
Gambling System by analogy to the Principle of Conservation of Energy. As the
energy principle is well-confirmed by empirical data about physical systems, so the
principle of randomness is well-confirmed for random sequences manifested in games
of chance and in data from insurance companies. Moreover, as the principle of
conservation of energy prohibits the construction of a perpetual motion machine, the
principle of impossibility of a gambling system prohibits the realization of a rule-
governed strategy in games of chance that would yield perpetual wealth to the
gambler: “We can characterize these two principles, as well as all far-reaching laws of
nature, by saying that they are restrictions which we impose on the basis of our
previous experience, upon our expectation of the further course of natural events”
(1928: 26).

Having defined the concept of a collective that is appropriate for the theory of
probability in terms of the two aforementioned laws, one may now define the
‘probability of an attribute A within a given collective C’ in terms of the limiting
value of relative frequency of the given attribute in the collective:

p (A) = lim M

n—oo n

Thus defined, probabilities are always conditional to a given collective. Does,
however, this definition provide an admissible concept of probability in compliance
with Kolmogorov’s axioms?

It is straightforward that axioms (i) and (ii) are satisfied. Namely, since for every

neN0<— m(4) < 1, it follows that 0 < p.(A) < 1. And if the attribute examined

consists in the entlre attribute space 2, then it will be satisfied by any member of the

sequence, @ —=1, s, taking limits, p.(2) = 1.

Regardlng the axiom of finite additivity (iii), one sees that, for any pair of
mutually exclusive attributes A, B, the number of times that either A or B occurs is the
sum of the occurrences of A and B, since the two cannot occur together:

m(AUB) _ m(A) + m(B).
n n

m(AU B) = m(4) + m(B) =

By taking limits
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p(AUB)=p.(A)+p(B).

However, von Mises’s concept of probability does not satisfy the axiom of
countable additivity (axiom iii"). To show that, consider the following infinite
attribute space 2 = {4, ..., Ay, ... } and assume that each attribute A, appears only
once in the course of an infinite sequence of repetitions of the experiment, then
p (A = 0, for every k € N. If the countable additivity condition were true, then
P =p (A1) + -+ p (A + - = 0. However, this is absurd, since it violates the
normalization condition p.(22) = 1. To provide a probability theory that satisfies all
Kolmogorov axioms, von Mises restricted further the scope of a collective. In addition
to the Law of Stability of Statistical Frequencies and the Principle of Randomness, in
his Mathematical Theory of Probability he required a third, independent condition
that a collective should satisfy (von Mises 1964: 12). Namely, that for a denumerable
attribute space 2 = {44, ..., Ay, ... }

To define conditional probability, begin with a given collective C and pick out all
elements that exhibit some attribute B. Assuming that they form a new collective Cj,

one can calculate the limiting relative frequency Pc, (4) = Agg%m in Cp.

The conditional probability of A given B in the collective C is then
Pc(AIB) =p. (A).

In case attribute B is manifested only a finite number of times in C, then Cp is a set of
a finite cardinality; hence, it does not qualify as a collective and conditional
probability is not defined. To avoid this ill-defined case, Gillies suggested requiring
that p.(B) # 0. Given this condition, he shows all prerequisites for Cp to be a
collective are satisfied and conditional probability can be defined (Gillies, 2000:112).

Von Mises’s account of probability has been criticized as being too narrow with
respect to the common use of the term ‘probability’: there are important situations in
which one applies the term although one cannot define a collective. Take, for
instance, von Mises’s question “Is there a probability of Germany being at some time
in the future involved in a war with Liberia” (1928: 9)? Since one does not refer to
repetitive or mass events, one cannot define a collective and, in the frequency
interpretation, the question is meaningless, since ‘probability’ is meaningfully used
only with reference to a collective. Hence, many common uses of ‘probability’ in
ordinary language become illegitimate if one thinks in terms of the empirical science
of probability as delineated by von Mises.

Some may think that this is not an objection at all: von Mises explicates probability
in a way that legitimizes only some uses of the term as it occurs in ordinary language
and, in this way, he deals with the problem of single-case probabilities that burdens
the frequency interpretation: associating probability with (limiting) relative frequency
yields trivial certainty (probability equal to 1) for all unrepeated or unrepeatable
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events. The solution offered by von Mises is to exclude definitionally such events
from the domain of application of the concept of probability.

Of course, there are alternative ways to understand probability, not as relative
frequency, that render its use to unrepeated or unrepeatable events legitimate. Take
for instance the subjectivist account (see section 4), which considers probability as a
measure of the degree of belief. In this conception, the question acquires meaning
requesting the degree of belief an agent would assign to that proposition. In addition,
to be on the safe side and avoid paradoxes, one may request coherence from the agent,
that is, that their degrees of belief satisfy Kolmogorov’s axioms of probability.

A criticism raised against von Mises’s account by de Finetti underlines that the
theory fails to deal with the role of probability in induction and confirmation: “If an
essential philosophical value is attributed to probability theory, it can only be by
assigning to it the task of deepening, explaining or justifying the reasoning by
induction. This is not done by von Mises” (De Finetti 1936).

In response to investigations on probability that aim to produce a theory of induction,
von Mises claims that probability theory itself is an inductive science and it would be
circular to try to justify inductive methodology by means of a science that applies it or
to provide any degree of confirmation for any other branch or science:

According to the basic viewpoint of this book, the theory of probability in its
application to reality is itself an inductive science; its results and formulas
cannot serve to found the inductive process as such, much less to provide
numerical values for the plausibility of any other branch of inductive science,
say the general theory of relativity. (1928: vii)

However, it is not that the frequency interpretation, in general, does not contribute to
the problem of induction. Reichenbach thought that the frequency interpretation of
probability theory provides a new context for understanding the problem of induction.
(See Problem of Induction==.

c. Are Propensities Probabilities?
The propensity interpretations are a family of accounts of physical probability.
They aim to provide an account of objective chance in terms of probability
theory. Originally, this interpretation was developed by Karl Popper (1959),
but later David Miller, James Fetzer, Donald Gillies and others developed
their own accounts (see Gillies 2000). Paul Humphreys (1985) describes
propensities as [I]Jndeterministic dispositions possessed by systems in a
particular environment, exemplified perhaps by such quite different
phenomena as a radioactive atom’s propensity to decay and my neighbor’s
propensity to shout at his wife on hot summer days.

The problems that guided Popper to abandon the frequency interpretation of
probability and to develop this new account had to do, on the one hand, with the
interpretation of quantum theory, and on the other, with objective single-case
probabilities.

To deal with the problem of single-case probabilities, Popper suggested that
probabilities should be associated not with sequences of events but with the
generating conditions of these sequences, that is, “the set of conditions whose
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repeated realisation produces the elements of the sequence” (1959). He claimed that
“probability may... be said to be a property of the generating conditions” (ibid). This
was not just an analysis of the meaning of the term ‘probability’. Popper claimed to
have proposed “a new physical hypothesis (or perhaps a metaphysical hypothesis)
analogous to the hypothesis of Newtonian forces. It is the hypothesis that every
experimental arrangement (and therefore every state of the system) generates physical
propensities which can be tested by frequencies” (ibid).

The propensity interpretation is supposed to avoid a number of problems faced by
the frequency interpretation; for instance, it avoids the problem of inferring
probabilities in the limit. But, especially in Popper’s version, it faces the problem of
specifying the conditions on the basis of which propensities are calculated — the
ascertainability requirement fails. Given that an event can be part of widely different
conditions, its propensity will vary according to the conditions. Does it then make
sense to talk about the true objective singular probability of an event?

Even if this problem is not taken seriously (after all, the advocate of propensities
may well claim that propensities are the sort of thing that varies with the conditions),
it has been argued on other grounds that probabilities cannot be identified with
propensities. Namely, so-called inverse probabilities, although they are
mathematically well-defined, remain uninterpreted since it does not make sense to
talk about inverse propensities. Suppose, for instance, that a factory produces red
socks and blue socks and uses two machines (Red and Blue) one for each color.
Suppose also that some socks are faulty and that each machine has a definite
probability to produce a faulty sock, say one out of ten socks produced by the Red
machine is faulty. One can meaningfully say that the Red machine has a one-tenth
propensity to produce faulty socks. But one can also ask the question: given an
arbitrary faulty sock, what is the probability that it has been produced by the Red
machine? From a mathematical point of view, the question is well-posed and has a
definite answer [for a detailed computation of probabilities in a similar example, see
section 1a above]. But one cannot make sense of this answer under the propensity
interpretation. One cannot meaningfully ask: what is the propensity of an arbitrary
faulty sock to have been produced by the Red machine? Propensities, as dispositions,
possess the asymmetry of the cause-and-effect relation that cannot be adequately
expressed in terms of the symmetric conditional probabilities. Thus, there are well-
defined mathematical probabilities that cannot be interpreted as propensities (see
Humphreys 1985).

Is this really a problem for the propensity interpretation? One would say yes if a
probability interpretation aspires to conform with Kolmogorov’s axioms
(admissibility requirement) and also claims to provide a complete interpretation of
probability calculus. But this condition is not universally accepted. One may suggest
that probability interpretations are partial interpretations of the probability calculus or
even take the more radical position to abandon the criterion of admissibility, as
Humphreys suggested.

3. Probability as the Logic of Induction

a. Keynes and The Logical Concept of Probability
John Maynard Keynes presented his account of probability in the work titled A
Treatise on Probability (1921). He attempted to provide a logical foundation
for probability based on the concept of partial entailment. In deductive logic,
entailment, considered semantically, expresses the validity of an inference,
and partial entailment is meant to be its extension to inductive logic. From a

14



semantical point of view, partial entailment expresses a probability relation
between the conclusion of an inference and its premises, that is, that the
conclusion is rendered likely true (or more likely to be true) given the truth of
the premises. Here is how Keynes (1921: 52) understood this extension and its
relation to probability: Inasmuch as it is always assumed that we can
sometimes judge directly that a conclusion follows from a premiss, it is no
great extension of this assumption to suppose that we can sometimes recognise
that a conclusion partially follows from, or stands in a relation of probability
to a premiss.

And

We are claiming, in fact, to cognise correctly a logical connection between one
set of propositions which we call our evidence and which we suppose
ourselves to know, and another set which we call our conclusions, and to
which we attach more or less weight according to the grounds supplied by the
first.... It is not straining the use of words to speak of this as the relation of
probability. (Keynes 1921: 5-6)

Thus, partial entailment rests on an analogy with deductive (full) entailment, and
both concepts express logical relations, the former of deductive and the latter of
inductive logic. Here is an example: the conjunction (p and q) entails deductively p;
by analogy, it is said that, though proposition p does not (deductively) entail the
conjunction (p and q), it entails it partially, since it entails one of its conjuncts
(for instance, p). The difference between the two kinds of entailment stems from the
fact that the validity of an inference, expressed in deductive entailment, is a yes-or-no
question, while the probability relation, expressed in partial entailment, comes in
degrees. Keynes (1921: 4) considered probability to be the degree of rational belief
that a future occurrence of an event under specified circumstances is partially entailed
from past evidence for the occurrence of similar events under similar circumstances:
“Let our premises consist of any set of propositions h, and our conclusion consist of
any set of propositions a, then, if a knowledge of h justifies a rational belief in a of
degree a, we say that there is a probability-relation of degree a between a and h.”

To say that the probability of a conclusion is high or low given a set of premises is not
for Keynes a matter of subjective evaluation of the believer. It shares the objectivity
of any other logical relation between propositions. That is why Keynes (1921: 4) talks
about the degree of rational belief and not simply of a degree of belief:

[ITn the sense important to logic, probability is not subjective. It is not, that is
to say, subject to human caprice. A proposition is not probable because we
think it so. When once the facts are given which determine our knowledge,
what is probable or improbable in these circumstances has been fixed
objectively, and is independent of our opinion. The Theory of Probability is
logical, therefore, because it is concerned with the degree of belief which it is
rational to entertain in given conditions, and not merely with the actual beliefs
of particular individuals, which may or may not be rational.
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It should be noted that Keynes based his defense of the logical character of the
probability relations on what he called “logical intuition,” namely, a certain capacity
possessed by agents in virtue of which they can simply “see” the logical relation
between the evidence and the hypothesis. It is in virtue of this shared intuition that
different agents can have the same rational degree of belief in a certain hypothesis in
light of certain evidence. This view was immediately challenged by Frank Ramsey,
who, referring to Keynes’s “logical relations” between statements, noted, “l do not
perceive them and if | am to be persuaded that they exist it must be by argument”
(1926, 63).

It should be clear that for Keynes probability is not always quantitative. He
believed that qualitative probabilities are meaningful as well and that the totality of
probabilities, or of degrees of rational belief, may include both numbers and non-
numerical elements. In the usual numerical probabilities, all probabilities lie within
the unit interval, and they are all comparable in terms of the relation ‘being greater
than or equal to’ as defined in real numbers. This relation induces a complete ordering
to the unit interval which acquires the structure of a completely ordered set. Since for
Keynes probabilities may not be numerical, a different interpretation of the relation
“being more probable than or equally probable to,” expressing the comparability of
probabilities, is required. In the class of probabilities, Keynes defines a relation of
‘between’ as follows:

Ais between B and C, (4, B, C)

where, for any three probabilities A, B, C, the relation, if satisfied, is satisfied by a
unique ordered triple (4, B, C). He identifies two distinguished probabilities,
impossibility, 0, and certainty, I, between which all other probabilities lie. Finally, he
used the relation of betweenness to compare probabilities:

If Ais between O and B, the probability B is said to be greater than the
probability A.

To illustrate these relations among probabilities, Keynes suggested the following
diagram. In this diagram, all probabilities comparable in terms of the ‘greater than’
relation are connected with a continuous path:

In Keynes’s (1921: 39) words:

O represents impossibility, I certainty, and A a numerically measurable
probability intermediate between O and I; U,V, W, X, Y, Z are nonnumerical
probabilities, of which, however, V is less than the numerical probability A4,
and is also less than W, X, and Y. X, and Y are both greater than W, and
greater than V, but are not comparable with one another, or with A. V and Z
are both less than W/, X, and Y, but are not comparable with one another; U is
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not quantitatively comparable with any of the probabilities V, W, X,Y, Z.
Probabilities which are numerically comparable will all belong to one series,
and the path of this series, which we may call the numerical path or strand,
will be represented by OAI.

b. The Principle of Indifference
To have numerical probabilities between alternative cases, Keynes (1921: 41)
believed that equiprobability of the alternatives is required:

“In order that numerical measurement may be possible, we must be given a
number of equally probable alternatives,”

and

“it has always been agreed that a numerical measure can actually be obtained
in those cases only in which a reduction to a set of exclusive and exhaustive
equiprobable alternatives is practicable” (1921: 65).

In the terminology of the mathematical theory of probability, Keynes stipulates
that a real number p(E|H) denotes the numerical probability of an event E given the
truth of some hypotheses H, assigned by a function p satisfying Kolmogorov’s
axioms, only if p(E|H) can be deduced by or it can be reduced to some initial
numerical probabilities p(A, |H) assigned to the members of a partition {4 };=1_n Of
the event space S that satisfy the equiprobability condition:

p(AclH) =p(4|H), kj=1,..,n

What is the basis of equiprobability and how can it be justified? Keynes (1921: 45)
suggested that the justification of equiprobability follows from the Principle of
Indifference, which states that:

[1]f there is no known reason for predicating of our subject one rather than
another of several alternatives, then relatively to such knowledge the
assertions of each of these alternatives have an equal probability. Thus, equal
probabilities must be assigned to each of several arguments, if there is an
absence of positive ground for assigning unequal ones.

The term ‘Principle of Indifference’ was coined by Keynes in the Treatise on
Probability. According to lan Hacking (1971), this principle can be traced back to
Leibniz’s paper “De incerti aestimatione” (1678). In this, Leibniz, anticipating
Laplace, claimed that “probability is the degree of possibility. Hope is the probability
of having. Fear is the probability of losing.”

Leibniz considered that claim as an axiom—something very similar to the Principle of
Indifference: “If players do similar things in such a way that no distinction can be
drawn between them, with the sole exception of the outcome, there is the same
proportion of hope to fear.”

Moreover, he suggested understanding this axiom as having its source in metaphysics,
which seems to be an allusion to the Principle of Sufficient Reason and, in particular,
to the claim that God does, or creates, nothing without a sufficient reason. Applying
this metaphysical principle to the expectations of rational agents, that is, ‘players’,
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one gets the following axiom, as Hacking suggested (1975:126): “If several players
engage in the same contest in such a way that no difference can be ascribed to them
(except insofar as they win or lose) then each player has exactly the same ground for

2 9

‘fear or hope’.

Keynes, however, traces the principle of indifference to Jacques (James) Bernoulli’s
Principle of Non-Sufficient Reason (1921: 41). Bernoulli, in his Ars Conjectandi,
attempted to calculate the “degree of certainty, or probability, that the argument
generates” (notice that by ‘argument’ he meant a piece of evidence), and he assumed
that ““all cases are equally possible, or can happen with equal ease.” There are
examples, however, in which a case happens more ‘easily’ than others. Then,
according to Bernoulli (1713: 219), one needs to make a correction: “For any case
that happens more easily than the others as many more cases must be counted as it
more easily happens. For example, in place of a case three times as easy | count three
cases each of which may happen as easily as the rest.”

Thus, Bernoulli suggested that, to save equiprobability, one should consider a finer
partition of the sample space by subdividing the ill-behaved case into distinct cases.

Keynes was aware that the principle faces a number of difficulties which take the
form of a paradox: it predicted contradictory evaluations of probabilities in specific
cases. To resolve these paradoxes and avoid ill cases, he attempted to provide
restrictions to the application of the principle of indifference.

The first paradox is known as the Book Paradox. Consider a book of unknown
cover color. There is no reason to believe that its color is red rather than not red.

Hence, by the principle of indifference, the probability of being red is % In a similar

vein, the probability of being green, yellow, or blue are all % which contradicts the

theorem of probability that the sum of probabilities of mutually exclusive events is
less than or equal to 1.

The second paradox is the Specific Volume Paradox. Consider the specific volume
v of a given liquid and assume that 1 < v < 3 in some system of units. Given that
there is no reason to assume that 1 < v < 2, rather than 2 < v < 3, by the principle
of indifference it is equally likely for the specific volume to lie in each one of these

intervals. Next, consider the specific density d = % Given the original assumption,
one is justified to infer that% < d < 1. Similarly, the principle of indifference
maintains that it is equally likely for the specific density to have a value § <d< % or
to have a value % < d < 1. Turning now to considerations about specific volume, one

finds that it is equally likely that 1 < v < % or % < v < 3. But it has already been

shown that it is as likely for v to lie between 1 and 2 as between 2 and 3.

The third paradox that seems to challenge the principle of indifference is
Bertrand’s paradox. Bertrand, in his Calcul des Probabilités (1888), argues that the
principle of indifference can be applied in more than one way in cases with infinitely
many possibilities, giving rise to contradictory outcomes regarding the evaluation of
probabilities. In support of his argument he presented, among other examples, his
famous paradox: Trace at random a chord in a circle. What is the probability that it
would be longer than the side of the inscribed equilateral triangle? Here are some
different ways to apply the principle of indifference to solve the problem, each
leading to different probability values. The first solution assumes that one end of the
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requested chord is at a vertex of the triangle and the other lies on the circumference.
The circumference is divided in three equal arcs by the vertices of the triangle. From
all possible chords traced from the given vertex, only those that lie in the arc which
subtends the angle at that vertex are longer than the side of the equilateral triangle.

Therefore, the probability is § For the second solution, assume that the chord is

parallel to a side of the triangle. From these parallel chords only the ones with a
distance less than one-half of the circle’s radius will have a length greater than the

side of the inscribed equilateral triangle. Thus, the requested probability is % Finally,

one yields a third solution by assuming that the chord is defined by its midpoint. Then
a chord is longer than the side of triangle if its midpoint falls within a concentric
circle of a radius one-half of the outer circle. The probability is calculated as the ratio

of the areas of the two circles and is found to be % Notice that Bertrand’s Paradox

can undermine the principle of indifference if and only if the problem at hand is a
determinate problem with no unique solution. But there is no agreement on that.
Many believe that the problem is ambiguous or underspecified and, in this sense,
indeterminate. They claim that once one selects the set of chords from which one
draws one at random, the problem has a unique solution by applying the principle of
indifference. (For an interesting discussion, see Shackel, 2007.)

To address the Book and the Specific Volume Paradoxes, Keynes suggested
placing a restriction to the application of the Principle of Indifference. One should
require that, given one’s state of knowledge, the partition of the sample space, that is,
the number of alternative cases, is finite, and each alternative cannot be split up
further into a pair of mutually exclusive sub-alternatives which have non-zero
probability to occur (see 1921: 60). Now it is obvious that the class of books with a
non-red cover can be further subdivided into the class of books with a blue cover and
those with a non-blue cover and so on; thus, the adequacy condition for the
application of the principle is not satisfied. Similarly, in the case of the ranges of
values of the specific volume and the specific density, the principle does not apply,
since there is no range of values which does not contain within itself two similar
ranges. Finally, for Bertrand’s paradox, since areas, arcs, and segments can be
subdivided further into non-overlapping parts without a limit, the principle of
indifference is not applicable (see 1921: 62). Yet, for the geometric example, Keynes
suggested a solution. Instead of considering as an alternative a point in a continuous
line, divide that line into a finite number of m segments, no matter how small, and
take as an alternative the segment in which the point under consideration lies. Then
apply the principle of indifference to the m alternatives which were considered
indivisible. However, Keynes’s solution is not at all clear. Number m can be as great
as one desires on the condition that it is kept finite. Hence, who decides what is the
number of alternatives to which the principle of indifference is applied? If, on the
other hand, m is allowed to increase indefinitely, then one gets the continuous case
one sought to avoid (see Childers 2013: 126).

c. Keynes on the Problem of Induction

For Keynes, probability is the part of logic that deals with rational but inconclusive
arguments; and since inductive reasoning is both inconclusive but rational, induction
becomes inductive logic. The key question, of course, is on what grounds are claims
that induction is rational justified.
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According to Keynes, though Hume’s skeptical claims are usually associated with
causation, the real object of his attack is induction, that is, the inference from past
particulars to future generalizations (see 1921: 312).

Keynes’s argument is the following:

(1) A constant conjunction between two events has been observed in the past. This
is a fact. Hume does not challenge this at all.

(2) What Hume challenges is whether one is justified to infer from a past constant
conjunction between two events that it will also hold in the future.

(3) This kind of inference is called inductive.

(4) So, Hume is concerned with the problem of induction.

To see Keynes’s reaction to the problem of induction, let us first clarify what is for
him an inductive argument (1921: 251): “It will be useful to call arguments inductive
which depend in any way on the methods of Analogy and Pure Induction.”

Arguments from analogy are based on similarities among the objects of a collection,
on their likeness, while Pure Induction is induction by enumeration. As Keynes (ibid)
put it, “[w]e argue from... Pure Induction when we trust the number of the
experiments.”

Keynes criticized Hume for not taking into account the analogical dimension of an
inductive argument by considering the observed instances, which serve as premises,
as absolutely uniform (see 1921: 252). Instead, Keynes suggested that the basis of
Pure Induction is the likeness of instances in certain respects (positive analogies) and
their dissimilarity in others (negative analogies). Only after having verified such a
likeness can one single out some features and predict the occurrence of other features
or infer a generalization of the sort “all A is B.” Hence (1921: 253):

In an inductive argument, therefore, we start with a number of instances
similar in some respects AB, dissimilar in others C. We pick out one or more
respects A in which the instances are similar, and argue that some of the other
respects B in which they are also similar are likely to be associated with the
characteristics A in other unexamined cases.

So, assume that a finite number, n, of instances exhibits a certain group of qualities,
a4, ..., a,, and single out two subgroups:

a,,a,,az and a,_q,a,

An inductive argument, for Keynes, would conclude that in every instance of
a,, a,, as, qualities a,_4, a,- are also exhibited, or that qualities a,_, a, are “bound
up” with qualities a4, a,, as (1921: 290). This account of induction presupposes,
claims Keynes (ibid), that qualities in objects are exhibited in groups and “a sub-class
of each group [is] an infallible symptom of the coexistence of certain other members
of it also.”

However, the world may not cooperate to the success of an inductive argument.
Keynes identifies three “open possibilities” that would compromise inductive
generalization:
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(1) Some quality a,_, or a,, may be independent of all other qualities of the
instances, that is, there are no groups of qualities that contain the said
quality and at least some of the others.

(2) There are no groups to which both a4, a,, a; and a,_;, a, belong.

(3) a4, a,, a; belong to groups that include a,_4, a,- and to other groups that do
not include them.

In any of the three cases, “All a4, a,, a3 are a,._;, a,.” fails. Hence, induction fails.
Keynes (1921: 291) suggested an assumption of probabilistic nature that would save
us from such ‘pathological’ cases and would lead to a successful induction, namely
“[i]f we find two sets of qualities in coexistence there is a finite probability that they
belong to the same group, and a finite probability also that the first set specifies this
group uniquely.”

If this assumption is granted, then inductive methodology aims to increase the prior
probability and make it large, in the light of new evidence. This topic is further
discussed later in this section.

Keynes discusses the justificatory ground of this assumption and shows that it
requires an a priori commitment to the claim that qualitative variety in nature is
limited. Although the individuals do differ qualitatively, “their characteristics,
however numerous, cohere together in groups of invariable connection, which are
finite in number” (1921: 285).

This idea is incorporated in the Principle of Limited Variety of a finite system
(PLV), which Keynes (1921: 286) stated thus:

[T]he amount of variety in the universe is limited in such a way that there is no
one object so complex that its qualities fall into an infinite number of
independent groups (i.e. groups which might exist independently as well as in
conjunction); or rather that none of the objects about which we generalise are
as complex as this; or at least that, though some objects may be infinitely
complex, we sometimes have a finite probability that an object about which
we seek to generalise is not infinitely complex.

The gist behind the role of PLV is this. Suppose that, although a group of properties,
say A, has been invariably associated with a group of properties, B, in the past, there
is an unlimited variety of groups of prope