
Probability and induction. 

 
 

‘Probability’ is an ambiguous word. In the history of ideas, it has been used with 

many different senses giving rise to different concepts of probability. Being 

associated with games of chance and gambling, death tolls and insurance policies, 

statistical inferences and the chancy world of modern physics, probabilities have been 

made susceptible to different interpretations. These interpretations may reflect on 

probabilities the objectivity of logic or the subjectivity of a person’s belief and lack of 

knowledge, the frequencies of observed data or the real tendency of a system to yield 

an outcome. Commonly, but not always, are considered to be interpretations of the 

mathematical concept of probability which by itself and in itself has no empirical 

meaning.  

The article attempts to present the different meanings of ‘probability’ and provide an 

introductory topography of the conceptual landscape. Without trying to provide a 

history of the idea, historical elements have been considered. Also, realizing that an 

exhaustive treatment would be difficult, we are focusing, mainly, on the discussion of 

induction and confirmation. The article is intended as a companion to another entry on 

IEP in which we discuss The Problem of Induction (Psillos and Stergiou, 2022); this 

explains why we do not deal here with Hans Reichenbach’s major contribution to the 

interpretation of probability theory.    

 
 
 

Table of Contents 
1. Elements of Probability Theory and its Interpretations  

a. On Mathematical Probability 

b. Interpretations of Probability  

2. What is Probability? 

a. The Classical Interpretation  

i. Probability as a Measure of Ignorance 

b. Probabilities as Frequencies 

c. Are Propensities Probabilities? 

3. Probability as the Logic of Induction 

a. Keynes and The Logical Concept of Probability 

b. The Principle of Indifference 

c. Keynes on the Problem of Induction 

d. On the Rule of Succession 

4. Carnap’s Inductive Logic 

a. Two Concepts of Probability 

b. C-functions 

c. The Continuum of Inductive Methods 

5. Subjective Probability and Bayesianism 

a. Probabilities as Degrees of Belief 

b. Dutch Books 

c. Bayesian Induction 

d. Too Subjective? 

e. Some Success Stories 



 2 

6. Appendices 

a. Lindenbaum algebra and probability in sentential logic. 

b. The Rule of Succession: a mathematical proof 

c. The mathematics of Keynes’s account of Pure Induction 

7. References and further reading 

 

1. Elements of Probability and its Interpretations  
a. On Mathematical Probability 

In the monograph Foundations of the Theory of Probability, first published in 

German in 1933, the Soviet mathematician A. N. Kolmogorov presented the definitive 

form of what is nowadays regarded an axiomatization of mathematical probability. 

The challenge of axiomatization has been set by D. Hilbert in the sixth of his famous 

twenty-three problems at the beginning of twentieth century (1902):  

…to treat in the same manner [as geometry], by means of axioms, those 

physical sciences in which mathematics plays an important part; in the first 

rank are the theory of probabilities and mechanics. 

Kolmogorov, addressing the problem, developed a theory of probability as a 

mathematical discipline “from axioms in exactly the same way as Geometry and 

Algebra” (1933:1). In his axiomatization, probability and the other primary concepts, 

devoid of any empirical meaning, are defined implicitly in terms of consistent and 

independent axioms in a set-theoretic setting. Thus, modern mathematical probability 

theory grew within the branch of mathematics called measure theory.  

Kolmogorov called elementary theory of probability “that part of the theory in 

which we have to deal with probabilities of only a finite number of events.” (ibid). A 

random event is an element of an event space; the latter being formalized by the set-

theoretic concept of field, introduced by Hausdorff in Set Theory (1927). A field is a 

non-empty collection of subsets 𝒮 of a given non-empty set  𝛤 that has the following 

properties:  

(a) for every pair of elements, 𝐴, 𝐵 of 𝒮, their union, 𝐴 ∪ 𝐵, belongs in 𝒮; 

(b) for every element 𝐴 of 𝒮 its complement with respect to 𝛤, 𝐴𝑐 = 𝛤\𝛢, is in 

𝒮.  

In probability theory the set 𝛤 is called sample space. 

To understand the above formalization, consider the simple example of tossing a 

die. Let 𝛤 be the set of the six possible outcomes:  
𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5, 𝐸6. 

The collection 𝒮 of all 26 = 64 subsets of 𝛤,  

∅, {𝐸1}, {𝐸2},… , {𝐸6}, {𝐸1,𝐸2}, {𝐸1,𝐸3}…,{𝐸5,𝐸6}, {𝐸1, 𝐸2, 𝐸3}, …, {𝐸4, 𝐸5, 𝐸6}, 
{𝐸1, 𝐸2, 𝐸3, 𝐸4}, …,{𝐸3, 𝐸4, 𝐸5, 𝐸6},  {𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5},…, {𝐸2, 𝐸3, 𝐸4, 𝐸5, 𝐸6}, 

{𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5,𝐸6}, 
satisfies conditions (a) and (b); 𝒮 is a field. The subsets of 𝛤 represent different 

possibilities that can be realized in tossing a single die: the empty set, ∅, is a random 

event that represents an impossible happening. The singletons, {𝐸1}, {𝐸2},… , {𝐸6}, are 

the elementary events, since any other random event (except ∅)  is a disjunction of 

these events, expressed by taking the set-theoretic union of the respective singletons. 

Finally, 𝛤 = {𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5,𝐸6},  is an event that represents the realization of any 

possibility.  

A function from a field 𝒮 to the set of real numbers, ℝ, 

𝑝: 𝒮 → ℝ, 

is called a probability function on 𝒮, if it satisfies the following axioms:  
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i. 𝑝(𝐴) ≥ 0, for 𝐴 ∈ 𝒮; 

ii. 𝑝(𝛤) = 1; 

iii. 𝑝(𝐴 ∪ 𝐵) = 𝑝(𝐴) + 𝑝(𝐵), for 𝐴 ∩ 𝐵 = ∅; 

 

In the simple example of tossing a die, a probability function 𝑝 would assign a 

non-zero real number 𝑝(𝐸) to each element 𝐸 of 𝒮, according to axiom (i). Axiom (ii) 

requires that the random event which describes any possible outcome has probability 

1, 𝑝(𝛤) = 1. Axiom (iii), commonly called finite additivity property, tells us how to 

calculate the probability value of any random event from the probability values of 

elementary events, for instance,   

𝑝({𝐸1, 𝐸2, 𝐸3, 𝐸4}) = 𝑝({𝐸1, 𝐸2}) +  𝑝({𝐸3, 𝐸4}) =  𝑝({𝐸1}) + 𝑝({𝐸2}) +
𝑝({𝐸3}) + 𝑝({𝐸4}). 

Notice that there are infinitely many admissible probability functions on the event 

space of the tossing of a die and that only one of them corresponds to a fair die, the 

one with 𝑝({𝐸𝑖}) =
1

6
 . 

Problems concerning a countably infinite number of random events require an 

additional axiom and the formalization of the event space as a σ-field. A field 𝒮 is a σ-

field if and only if it satisfies the following condition:  

(c) for every infinite sequence of elements of 𝒮, {𝐴𝑛}𝑛∈ℕ, the countably 

infinite union of these sets, ⋃ 𝐴𝑛
∞
𝑛=1  belong in 𝒮. 

Every field 𝒮 of finite cardinality is a σ-field since any infinite sequence in 𝒮 

consists of a finite number of different subsets of 𝛤 and their union is always in 𝒮, 

according to (a). Yet this may not be the case if the field is constructed from a 

countably infinite set 𝛤. Imagine, for instance, a die of infinite faces, where the set 𝛤 

of possible outcomes is: 
𝐸1, 𝐸2, 𝐸3,… 

Let the collection 𝒮 consist of subsets 𝐴 of  𝛤 which are either of finite cardinality or 

their complement, 𝐴𝑐 = 𝛤\𝛢, is of finite cardinality: 

𝒮 = {𝛢 ⊂ 𝛤: 𝛢 is finite or 𝐴𝑐 is finite }. 
It’s easy to show that 𝒮 is a field. Yet it is not a σ-field, since the set  

⋃{𝐸2𝑛}

𝑛∈ℕ

 

which is the infinite union of {𝐸2𝑛}, 𝑛 ∈ ℕ does not belong to 𝒮. 

A probability function on a σ-field 𝒮,  

𝑝: 𝒮 → ℝ, 

satisfies the following axioms:  

 

i'. 𝑝(𝐴) ≥ 0, for 𝐴 ∈ 𝒮; 

ii'. 𝑝(𝛤) = 1; 

iii'. 𝑝(⋃ 𝐴𝑛
∞
𝑛=1 ) = 𝑝(𝐴1) + ⋯+ 𝑝(𝐴𝑁) + ⋯ = ∑ 𝑝(𝐴𝑛)

∞
𝑛=1  , for 𝐴𝑖 ∩ 𝐴𝑗 = ∅, for 

𝑖 ≠ 𝑗. 
 

It is evident that axiom (iii΄), commonly called countable additivity property of the 

probability function, extends finite additivity to the case of a countably infinite family 

of events. Originally, Kolmogorov suggested a different axiom, equivalent to 

countable additivity, the axiom of continuity (1933: 14):  
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iii΄΄. For a monotone sequence of events {𝐴𝑛}𝑛∈ℕ, with 𝐴𝑛 ⊇ 𝐴𝑛+1, 𝑛 ≥ 1 such 

that ⋂ 𝐴𝑛 = ∅
∞
𝑛=1 , 𝑝(𝐴𝑛) ⟶ 0 when 𝑛 → ∞. 

In what follows we will see that many interpretations of mathematical probabilities 

are actually interpretations of elementary probability theory, and that they face serious 

problems when applied to mathematical probability theory formulated in σ-fields.  

A special probability function 𝑝(⦁|𝐴): 𝒮 → ℝ can be defined on 𝒮, if we are given 

a function 𝑝 on 𝒮 and a random event 𝐴 ∈ 𝒮 such that 𝑝(𝐴) ≠ 0:  

𝑝(𝐵|𝐴) =  
𝑝(𝐵 ∩ 𝐴)

𝑝(𝐴)
, for 𝐵 ∈ 𝒮 

𝑝(⦁|𝐴) determines the conditional probability 𝑝(𝐵|𝐴) of some event 𝐵 ∈ 𝒮 given an 

event 𝐴, while 𝑝(𝐵) is the unconditional probability of 𝐵.  

The conditional probability given an event 𝐴 ∈ 𝒮 of any random event 𝐵 ∈ 𝒮, 

𝑝(𝐵|𝐴), can be understood as unconditional probability of an event 𝐷, 𝑝𝐴(𝐷), 
determined by a probability function 𝑝𝐴  on a reduced event space 𝒮𝐴 consisting of 

subsets of the event 𝐴 ∈ 𝒮 we conditionalize on; namely, 𝑝𝐴: 𝒮𝐴 → ℝ, 𝑝𝐴(𝐷) =
𝑝(𝐵|𝐴), where 𝒮𝐴 = {𝐷:𝐷 = 𝐵 ∩ 𝐴,  for 𝐵 ∈ 𝒮}.  

In the tossing of a fair die example, the conditional probability of any outcome, 

event 𝐵 = {𝐸𝑖}, 𝑖 = 1,… 6, given that it is an even number, event 𝐴 = {𝐸2, 𝐸4, 𝐸6}, is 

provided by the conditional probability function 𝑝(⦁|𝐴), defined on the σ-field 𝒮. 

Since the die is fair, 𝑝({𝐸𝑖}) =
1

6
  for  𝑖 = 1,… 6; also, 𝑝(𝐵 ∩ 𝐴) =

1

6
  for 𝐵 =

{𝐸𝑖},  𝑖 = 2,4,6, while 𝑝(𝐵 ∩ 𝐴) = 0 otherwise; using the finite additivity axiom, 

𝑝(𝐴) = 𝑝({𝐸2}) + 𝑝({𝐸4}) + 𝑝({𝐸6}) =
1

6
+
1

6
+
1

6
=
1

2
 ; so, 𝑝(𝐵|𝐴) =

1

3
 , for 𝐵 =

{𝐸𝑖},  𝑖 = 2,4,6, and 𝑝(𝐵|𝐴) = 0 otherwise. Now, consider the reduced event space 𝒮𝐴 

consisting of the subsets of {𝐸2, 𝐸4, 𝐸6}. Since the die is fair, 𝑝𝐴({𝐸𝑖}) =
1

3
  for  𝑖 =

2,4,6 and, 𝑝𝐴(𝐵) =
1

3
= 𝑝(𝐵|𝐴) for 𝐵 = {𝐸𝑖},  𝑖 = 2,4,6, while 𝑝𝐴(∅) = 0 = 𝑝(𝐵|𝐴) 

otherwise.     

Kolmogorov’s axiomatic account, the standard mathematical textbook account of 

probability theory, explicates the concepts of random event and event space in terms 

of set theory. Yet, Boole proposed 

… another form under which all questions in the theory of probabilities may 

be viewed; and this form consists in substituting for events the propositions 

which assert that those events have occurred, or will occur; and viewing the 

element of numerical probability as having reference to the truth of those 

propositions, not to the occurrence of the events concerning which they make 

assertion. (1853:190) 

This formulation of probability theory is very common in philosophical contexts, 

especially when discussing inductive inference. It typically concerns elementary 

probability theory, presented in the language of sentential logic. Elements of this 

account can be found in Appendix 6.a and the reader may also consult (Howson and 

Urbach 2006: Ch.2). Here, we present just a few propositions of elementary 

probability theory as formulated in this setting that will be found useful in what 

follows:  

• Probability 1 is assigned to tautologies and probability 0 to contradictions. All 

other sentences have probability values between 0 and 1.  

• The probability of the negation of sentence 𝑎 is 1 − 𝑝(𝑎). 
• The probability of the disjunction of two inconsistent sentences 𝑎, 𝑏 is the sum of 

probabilities of the sentences:  

𝑝(𝑎 ∨ 𝑏) = 𝑝(𝑎) + 𝑝(𝑏). 
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• The conditional probability of a sentence 𝑎 given the truth of a sentence 𝑏 is:  

𝑝(𝑎|𝑏) =
𝑝(𝑎 ∧ 𝑏)

𝑝(𝑏)
, 𝑝(𝑏) ≠ 0. 

• Bayes’s Theorem. The posterior probability of a hypothesis ℎ – i.e., the 

probability of ℎ conditional on evidence 𝑒 – is:  

𝑝(ℎ|𝑒) =
𝑝(𝑒|ℎ)𝑝(ℎ)

𝑝(𝑒)
 , where 𝑝(ℎ), 𝑝(𝑒) > 0, 

where 𝑝(𝑒|ℎ) is called likelihood of the hypothesis and expresses the probability 

of the evidence conditional on the hypothesis; 𝑝(ℎ) is called prior probability of 

the hypothesis; and 𝑝(𝑒) is the probability of the evidence. 

 

We conclude this brief introduction to mathematical probability with the following 

instructive application of Bayes’s theorem. A factory uses three engines 𝐴1, 𝐴2, 𝐴3 to 

produce a product. The first engine, 𝐴1, produces 1000 items, the second, 𝐴2, 2000 

items and the third, 𝐴3, 3000 items, per day. Of these items, 4%, 2% and 4%, 

respectively, are faulty. What is the probability of a faulty product having been 

produced by a given engine in a day? Let ℎ𝑖   be the hypothesis: “A product has been 

produced by engine 𝐴𝑖 in a day”, for 𝑖 = 1,2,3, and  𝑒: “A faulty product has been 

produced in a day”. Then the prior probabilities of ℎ𝑖 are,  𝑝(ℎ1) =
1

6
;  𝑝(ℎ2) =

1

3
; 𝑝(ℎ3) =

1

2
  and the likelihoods  are  𝑝(𝑒|ℎ1) = 0.04, 𝑝(𝑒|ℎ2) = 0.02; 𝑝(𝑒|ℎ3) =

0.04, respectively. Using the theorem of total probability (see, Appendix 6a), we can 

calculate 𝑝(𝑒) = 𝑝(ℎ1)𝑝(𝑒|ℎ1) + 𝑝(ℎ2)𝑝(𝑒|ℎ2) + 𝑝(ℎ3)𝑝(𝑒|ℎ3) =
1

6
∙ 0.04 +

1

3
∙

0.02 +
1

2
∙ 0.04 =

1

30
. By applying Bayes’s theorem we obtain the posterior probability 

for each hypothesis, 𝑝(ℎ1|𝑒) = 0.20;  𝑝(ℎ2|𝑒) = 0.20;  𝑝(ℎ3|𝑒) = 0.60, that is, the 

probability of a faulty product to have been produced by a given engine in a day. 

 

b. Interpretations of probabilities 

As any other part of mathematics, probability theory does not have on its own any 

empirical meaning and cannot be applied to games of chance, to the study of physical 

or biological systems, to risk evaluation or insurance policies and, in general, to 

empirical science and practical issues, unless we provide an interpretation of its 

axioms and theorems. This is what Wesley Salmon (1966: 63) dubbed the 

philosophical problem of probability:  

 

It is the problem of finding one or more interpretations of the probability 

calculus that yield a concept of probability, or several concepts of probability, 

which do justice to the important applications of probability in empirical 

science and in practical affairs. Such interpretations whether one or several 

would provide an explication of the familiar notion of probability. 

  

Salmon suggested three criteria that an interpretation of probability is desirable to 

satisfy. The first one is called admissibility, and it requires that the probability 

concepts satisfy the mathematical relations of the calculus of probability, i.e., the 

axioms of Kolmogorov. This is a minimal requirement for the concept of probability 

to be an interpretation of mathematical probability but not a trivial one, since 

countable additivity may be a problem for some interpretations of probability (see, 

2.a.i and 2.b), while in others, Kolmogorov’s axioms are supposed to follow naturally 
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from the practice of gambling (see, 5.a and 5.b). The second criterion is 

ascertainability. It requires that there should be a method by which, in principle at 

least, we can ascertain values of probabilities. If it is impossible to find out what the 

values of probability are, then the concept of probability is useless. Again, not all 

suggested interpretations satisfy this requirement. According to Salmon, 

Reichenbach’s frequency interpretation fails to meet this requirement (1966: 89ff.). 

Finally, applicability is the third criterion: a concept of probability should be 

applicable, i.e., it should have a practical predictive significance. The force of this 

criterion is manifested in everyday life, in science as well as in the logical structure of 

science. The concept of scientific confirmation provides a venerable example of 

application of probability theory. 

Interpretations of probability theory may be classified under two general families: 

inductive and physical probability. The classical, the logical and the subjective 

interpretations of probability are deemed inductive, while the frequency and the 

propensity interpretations yield physical probabilities. To illustrate the difference 

between inductive and physical probability, an example may be instructive (Maher, 

2006). Think of a coin that you know is either two-headed or two-tailed, but you have 

no information about what it is. What is the probability that it would land heads, if 

tossed? One possible answer would be that the probability is  
1

2
 , since there are two 

possibilities, and we have no evidence which one is going to be realized. Another 

answer would say that the probability is either 0, if the coin is two-tailed, or 1, if two-

headed, but we do not know which. Maher suggests that if ‘
1

2
’ occurs as a natural 

answer, then we understand ‘probability’ in the sense of inductive probability while 

the sense in which ‘0 or 1’ occurs as a natural answer is physical probability. What is 

the difference between the two meanings? Inductive probability is relative to available 

evidence, and it does not depend on how the unknown part of the world is, i.e., on 

unknown facts of the matter. Thus, if in this example we come to know that the coin 

tossed has a head on one side, we should revise the probability estimate in the light of 

new evidence and claim that now the inductive probability is 1. On the other hand, 

physical probability is not relative to evidence, and it depends on facts that may be 

unknown. This is why the further piece of information we entertained does not alter 

the physical probability (it is still ‘0 or 1’).  

 

2. What is Probability? 
a. The Classical Interpretation  
Pierre Simon Laplace proposed what has come to be known as the classical 

interpretation in his work, The Analytical Theory of Probabilities (1812), and in the 

much shorter, A Philosophical Essay on Probabilities (1814); a book based on a 

lecture on probabilities he delivered in the Ecole Normale, in 1795. His deterministic 

view of the universe, Laplacian determinism, is legendary. Not only did he believe 

that every aspect of the world, any event that takes place in the universe is governed 

by the principle of sufficient reason “…the evident principle that a thing cannot occur 

without a cause which produces it” (1814: 3) but also that “[w]e ought … to regard 

the present state of the universe as the effect of its anterior state and as the cause of 

the one which is to follow.” (1814: 4). Moreover, he claimed that the universe is 

knowable, in principle, and that a supreme intelligence that:  

could comprehend all the forces by which nature is animated and the 

respective situation of the beings who compose it—an intelligence sufficiently 

vast to submit these data to analysis—it would embrace in the same formula 
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the movements of the greatest bodies of the universe and those of the lightest 

atom. (ibid)  

However, human intelligence is weak. It cannot provide an adequate unified picture of 

the world and subsume the macroscopic and microscopic realm under the province of 

a single formula. Nor can it give the causes of all events that occur and render them 

predictable. Thus, ignorance emerges as an expression of human limitation. Laplace 

stressed that: 

 

[t] he curve described by a simple molecule of air or vapor is regulated in a 

manner just as certain as the planetary orbits; the only difference between 

them is that which comes from our ignorance. (1814: 6) 

 

Due to ignorance of the true causes, he claimed, people believe in final causation, or 

they make chance (‘hazard’ in Laplacian terminology) an objective feature of the 

world. “[B]ut these imaginary causes” explains Laplace, “have gradually receded with 

the widening bounds of knowledge and disappear entirely before sound philosophy, 

which sees in them only the expression of our ignorance of the true causes.” (1814: 3) 

 

i. Probability as a Measure of Ignorance 

In this context, Laplace interpreted probability as a measure of our ignorance making 

it dependent on evidence one is aware of, or, on lack of such evidence: 

  

Probability is relative, in part to this ignorance, in part to our knowledge. We 

know that of three or a greater number of events a single one ought to occur; but 

nothing induces us to believe that one of them will occur rather than the others. 

In this state of indecision, it is impossible for us to announce their occurrence 

with certainty. It is, however, probable that one of these events, chosen at will, 

will not occur because we see several cases equally possible which exclude its 

occurrence, while only a single one favors it. (1814: 6) 

 

The measure of probability of an event is determined by considering equally 

probable cases that either favor or exclude its occurrence and the concept of 

probability is reduced to the notion of equally probable events: 

  

The theory of chance consists in reducing all the events of the same kind to a 

certain number of cases equally possible, that is to say, to such as we may be 

equally undecided about in regard to their existence, and in determining the 

number of cases favorable to the event whose probability is sought. The ratio of 

this number to that of all the cases possible is the measure of this probability, 

which is thus simply a fraction whose numerator is the number of favorable 

cases and whose denominator is the number of all the cases possible. (1814: 6-

7) 

 

Laplace claims that the probability of an event is the ratio of the number of 

favorable cases to that of all possible cases. And this principle of the calculus of 

probability has for Laplace the status of a definition: 

 

First Principle.—The first of these principles is the definition itself of 

probability, which, as has been seen, is the ratio of the number of favorable 

cases to that of all the cases possible. (1814: 11)  
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In the jargon of the mathematical theory of probability, one may consider a 

partition {𝐴𝑘}𝑘=1…𝑛 of the event space 𝒮, i.e. a family of mutually exclusive subsets 

exhaustive of the sample space, 𝐴𝑖 ∩ 𝐴𝑗 = ∅ and ⋃ 𝐴𝑘
𝑛
𝑘=1 = 𝛤 – and assume equal 

probability for all random events 𝐴𝑘, 𝑝(𝐴𝑖) = 𝑝(𝐴𝑗), for every 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

Now, for every event 𝐸 that is decomposable into any sub-family {𝐴𝑘𝑙}𝑙=1…𝑚 ⊆

{𝐴𝑘}𝑘=1…𝑛, 

𝐸 =⋃𝐴𝑘𝑙

𝑚

𝑙=1

, 

the probability of 𝐸 is, 

 

𝑝(𝐸) =
𝑚

𝑛
=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠 𝑓𝑜𝑟 𝐸

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠.
. 

 

We can easily show that a function defined in this way satisfies the axioms of 

elementary probability theory: 𝑝(𝐴) ≥ 0, for 𝐴 ∈ 𝒮; 𝑝(𝛤) = 1; 𝑝(𝐴 ∪ 𝐵) = 𝑝(𝐴) +
𝑝(𝐵), for 𝐴 ∩ 𝐵 = ∅. Hence, Laplace’s first principle suggests an admissible, in 

Salmon’s sense, interpretation of the elementary theory.  

Countable additivity (axiom iii΄), on the other hand, is not satisfied for an event 

space of countably infinite cardinality. To show this, consider an infinite partition 
{𝐴𝑘}𝑘=1…∞ and assign equal probability to all 𝐴𝑘s, 𝑝(𝐴𝑘) ≥ 0. Then by employing 

axioms i΄ and ii΄ along with the equal probability condition and countable additivity 

(axiom iii΄), we are led to the following absurdity:  

1 = 𝑝(𝛤) = 𝑝(⋃𝐴𝑘) =
𝐶𝑜𝑢𝑛𝑡.𝐴𝑑𝑑𝑖𝑡.  ∑𝑝(𝐴𝑘) =

0
𝑜𝑟
∞

∞

𝑘=1

∞

𝑘=1

 

 

Hence, classical interpretation is not an admissible interpretation of the mathematical 

theory of probability in general. It singles out only certain models of probability 

theory (elementary theory) in which the cardinality of the event space is finite.  

Another criticism raised against the classical interpretation (Hajek, 2019) is related 

to its applicability. The classical interpretation of probability allows only rational-

valued probability functions, defined in terms of a ratio of integers. However, in many 

branches of science, theories (for instance, quantum mechanics) assign to events 

irrational probability values. In these cases, one cannot interpret probability value in 

terms of the ratio of the number of favorable, over the total number of cases. 

As we have already discussed, in the definition of probability, Laplace presupposes 

that all cases are equally probable. This fact gives rise to a well-known criticism, 

namely, that of circularity of the definition of probability: if the relation of 

equiprobability of two events depends conceptually on what probability is, then the 

definition of probability is circular. To avoid this criticism, the soviet mathematician 

and student of Kolmogorov Boris Gnedenko, considered the notion of equal 

probability a primitive notion “which is …basic and is not subject to a formal 

definition.” (1978: 23) 

Laplace, in several places, wrote about “equally possible” cases as if ‘possibility’ 

and ‘probability’ were terms that could be used interchangeably. To assume that is to 

commit a category mistake, as Hayek has pointed out, since possibilities do not come 

in degrees. Nevertheless, as we shall see in section 3.a.1, the connection between 

possibility and probability can be established in terms of Keynes’s principle of 
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indifference. In the same section we will discuss the paradoxes of indifference that 

also undermine Laplace’s idea of probability. 

 

b. Probabilities as Frequencies  
The frequency interpretation of probability can be traced back to the work of R. L. 

Ellis and John Venn, in the middle of nineteenth century and it has been described as 

“a ‘British Empiricist’ reaction to the ‘Continental rationalism’ of Laplace” (Gillies 

2000: 88). In Ellis’s article “On the Foundations of the Theory of Probability” (1842) 

we identify the rudiments of this interpretation: 

 

If the probability of a given event be correctly determined, the event will, on a 

long run of trials, tend to recur with frequency proportional to this probability. 

 

Venn presented his own account, a few years later, in 1866, in The Logic of Chance:  

 

we may define the probability or chance … of the event happening in that 

particular way as the numerical fraction which represents between the two 

different classes in the long run. (the quote is from 3rd edition, 1888: 163) 

 

The real boost, however, for the frequency interpretation has been given in the 

early twentieth century, with the advent of Logical Empiricism, by Richard von 

Mises, in Vienna, and Hans Reichenbach, in Berlin. The first, in his work Probability, 

Statistics and Truth, published in German in 1928, provides a thorough mathematical 

and operationalist account of probability theory as empirical science, alike empirical 

geometry and the science of mechanics. The account has been presented more 

rigorously in von Mises’ posthumously published work, entitled Mathematical Theory 

of Probability and Statistics (1964). Reichenbach presented his mature views on 

probability in the work The Theory of Probability: an inquiry into the logical and 

mathematical foundations of the calculus of probability originally published in 

Turkey, in 1935. In this work, Reichenbach attempted to establish a probability logic, 

based on the relation of probability implication, which is governed by four axioms. 

Relative frequencies of sub-series of events in a larger series are interpreted as 

probabilities and they are shown to satisfy the axioms of probability logic. However, 

Reichenbach’s milestone contribution concerns the connection between probability 

theory and the problem of induction. In this section, we will focus, mainly, on the 

frequency interpretation of probability as suggested by von Mises while for 

Reichenbach’s views the reader may consult our IEP entry on The Problem of 

Induction (Psillos and Stergiou, 2022).  

Von Mises claimed that the subject matter of probability theory are the repetitive 

events – “same event that repeats itself again and again” - and the mass phenomena – 

“a great number of uniform elements … [occurring] at the same time” (1928: 11). 

Probability, according to von Mises, is defined in terms of a collective, a concept 

which “denotes a sequence of uniform events or processes which differ by certain 

observable attributes, say colors, numbers or anything else” (1928: 12). For example, 

take a plant coming from a given seed as a single instance of a collective which 

consists of a large number of plants coming from the given type of seed. All members 

of the collective differ from each other with respect to some attribute, say the color of 

the flower or the height of the plant. Respectively, in the case of tossing a die the 

collective consists of the long series of tosses and the attribute which distinguishes the 

instances is the number that appears on the face of the die. The mathematical 



 10 

representation of such finite empirical collectives is given in terms of their idealized 

counterpart, the infinite ordered sequences of events, which exhibit attributes that are 

subsets of the attribute space of the collective (which is no different from what we 

have called sample space). 

Yet, to be an empirical collective, a sequence of events should satisfy two 

empirically well-confirmed laws that dictate the mathematical axioms of probability 

theory in the ideal case of the infinite sequences. The first law, dubbed by Keynes 

(1921: 336), Law of Stability of Statistical Frequencies, requires that: 

 

the relative frequencies of certain attributes become more and more stable as the 

number of observations is increased. (von Mises 1928: 12) 

 

 Thus, if 𝛺 is the attribute space, 𝐴 ⊆ 𝛺 is an attribute and 𝑚(𝛢) is the number of 

manifestations of 𝛢 in the first 𝑛 members of the collective, the relative frequency, 
𝑚(𝛢)

𝑛
, tends to a fixed number as the number 𝑛 of observations increases. According to 

von Mises, the Law of Stability of Statistical Frequencies is confirmed by 

observations in all games of chance (dice, roulette, lotteries, etc.), in data from 

insurance companies, in biological statistics, and so on (von Mises 1928: 16-21). This 

empirical law gives rise to the axiom of convergence for infinite sequences of events: 

for an arbitrary attribute 𝐴 of a collective 𝐶, lim
𝑛→∞

𝑚(𝐴)

𝑛
  exists.  

 Τhis law can be traced back to the views of von Mises’s predecessors. For 

instance, Venn thought that probability is about “a large number or succession of 

objects, or, as shall term it, series of them” (1888: 5). This series should be 

‘indefinitely numerous’ and it should “combine[s] individual irregularity with 

aggregate regularity” (1888: 4). All series, for Venn, initially exhibit irregularity, if 

one considers only their first elements, while, subsequently, a regularity may be 

attested. This regularity, however, can be unstable and it can be destroyed in the long 

run, in the “ultimate stage” of the series. According to Venn, a series is of the fixed 

type if it preserves the uniformity while it is of the fluctuating type if “the uniformity 

is found at last to fluctuate.” (1888: 17). Probability is defined only for series of the 

fixed type; if a series is of the fluctuating type, it is not the subject of science (1888: 

163). But what does it mean, in terms of relative frequencies, that a series is of the 

fixed type? “The one [fixed type] tends without any irregular variation towards a 

fixed numerical proportion in its uniformity”. (ibid).  

In more detail: 

  

[a]s we keep on taking more terms of the series we shall find the proportion still 

fluctuating a little, but its fluctuations will grow less. The proportion, in fact, will 

gradually approach towards some fixed numerical value, what mathematicians 

term its limit. (1888: 164)  

 

 The second presupposition for a sequence to be a collective is an original 

contribution of von Mises. Apart from the existence of limiting relative frequencies in 

infinite sequences, he demanded the sequence to be random in the sense that there is 

no rule-governed selection of a subsequence of the original sequence that would yield 

a different relative frequency of the attribute in question from the one obtained in the 

original sequence. In von Mises (1957: 29) own words: 
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…these fixed limits are not affected by place selection. That is to say, if we 

calculate the relative frequency of some attribute not in the original sequence, 

but in a partial set, selected according to some fixed rule, then we require that 

the relative frequency so calculated should tend to the same limit as it does in 

the original set… The fulfilment of the condition…will be as the Principle of 

Randomness or the Principle of Impossibility of a Gambling System. 

 

In a more detailed account of how the subsequence is obtained by place selection, 

von Mises (1964: 9) explained that in inspecting all elements of the original sequence, 

the decision to keep the nth element in or to reject it from the subsequence depends 

either on the ordinal number 𝑛 of this element or on the attributes manifested in the 

(𝑛 − 1) preceding elements. This decision does not depend on the attribute exhibited 

by the nth or by any subsequent element. 

Von Mises suggested that we should understand the Principle of Impossibility of a 

Gambling System by analogy to the Principle of Conservation of Energy. As the 

energy principle is well-confirmed by empirical data about physical systems, so the 

principle of randomness is well-confirmed for random sequences manifested in games 

of chance and in data from insurance companies. Moreover, as the principle of 

conservation of energy prohibits the construction of a perpetual motion machine, the 

principle of impossibility of a gambling system prohibits the realization of a rule-

governed strategy in games of chance that would yield perpetual wealth to the 

gambler: 

 

We can characterize these two principles, as well as all far-reaching laws of 

nature, by saying that they are restrictions which we impose on the basis of our 

previous experience, upon our expectation of the further course of natural 

events. (1928: 26) 

 

Having defined the concept of a collective that is appropriate for the theory of 

probability in terms of the two aforementioned laws, we may, now, define the 

‘probability of an attribute 𝐴 within a given collective 𝐶’ in terms of the limiting 

value of relative frequency of the given attribute in the collective:  

 

𝑝𝐶(𝐴) = lim
𝑛→∞

𝑚(𝐴)

𝑛
. 

 

Thus defined, probabilities are always conditional to a given collective. Does, 

however, this definition provide an admissible concept of probability in compliance 

with Kolmogorov’s axioms?  

 It is straightforward that axioms (i) and (ii) are satisfied. Namely, since for every 

𝑛 ∈ ℕ, 0 ≤
𝑚(𝐴)

𝑛
≤ 1, it follows that 0 ≤ 𝑝𝐶(𝐴) ≤ 1. And if the attribute examined 

consists in the entire attribute space 𝛺 then it will be satisfied by any member of the 

sequence, 
𝑚(𝛺)

𝑛
= 𝑛

𝑛
= 1, so, taking limits, 𝑝𝐶(𝛺) = 1. 

 Regarding the axiom of finite additivity, (iii), we have that for any pair of 

mutually exclusive attributes, 𝐴, 𝐵, the number of times that either 𝐴 or 𝐵 occurs is 

the sum of the occurrences of 𝐴 and 𝐵, since the two cannot occur together: 

  

𝑚(𝐴 ∪ 𝐵) = 𝑚(𝐴) + 𝑚(𝐵) ⇒
𝑚(𝐴∪𝐵)

𝑛
=
𝑚(𝐴)

𝑛
+
𝑚(𝐵)

𝑛
. 
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By taking limits: 

 

𝑝𝐶(𝐴∪𝐵) = 𝑝𝐶(𝛢) + 𝑝𝐶(𝛣). 

 

 However, von Mises’ concept of probability does not satisfy the axiom of 

countable additivity (axiom iii΄). To show that, consider the following infinite 

attribute space 𝛺 = {𝛢1, … , 𝛢𝑘 , … } and assume that each attribute 𝐴𝑘 appears only 

once in the course of an infinite sequence of repetitions of the experiment, then 

𝑝𝐶(𝛢𝑘) = 0, for every 𝑘 ∈ ℕ. If the countable additivity condition were true, then 

𝑝𝐶(𝛺) = 𝑝𝐶(𝐴1)+⋯+𝑝𝐶(𝐴𝑘)+⋯ = 0. However, this is absurd, since it violates the 

normalization condition 𝑝𝐶(𝛺) = 1. To provide a probability theory that satisfies all 

Kolmogorov axioms, von Mises restricted further the scope of a collective. In addition 

to the Law of Stability of Statistical Frequencies and the Principle of Randomness, in 

his Mathematical Theory of Probability he required a third, independent, condition 

that a collective should satisfy (von Mises 1964: 12). Namely, that for a denumerable 

attribute space 𝛺 = {𝛢1, … , 𝛢𝑘 , … }: 
 

 

∑ lim
𝑛→∞

𝑚(𝐴𝑘)
𝑛

∞

𝑘=1

= 1. 

 

 

To define conditional probability, we may begin with a given collective 𝐶 and pick 

out all elements that exhibit some attribute 𝐵. Assuming that they form a new 

collective 𝐶𝐵, we calculate the limiting relative frequency 𝑝𝐶𝐵
(𝐴) = lim

𝑛→∞

𝑚(𝐴)

𝑛
 in 𝐶𝐵. 

 The conditional probability of 𝐴 given 𝐵 in the collective 𝐶 is then: 

 
𝑝𝐶(𝐴|𝐵) = 𝑝𝐶𝐵

(𝐴). 

 

In case attribute 𝐵 is manifested only a finite number of times in 𝐶, then 𝐶𝐵 is a set of 

a finite cardinality; hence, it does not qualify as a collective and conditional 

probability is not defined. To avoid this ill-defined case, Gillies suggested that we 

require that 𝑝𝐶(𝐵) ≠ 0. Given this condition he shows all prerequisites for 𝐶𝐵 to be a 

collective are satisfied and conditional probability can be defined (Gillies, 2000:112). 

Von Mises’s account of probability has been criticized as being too narrow with 

respect to the common use of the term ‘probability’: there are important situations in 

which we apply the term although we cannot define a collective. Take for instance, 

von Mises’s question “Is there a probability of Germany being at some time in the 

future involved in a war with Liberia?” (1928: 9) Since we do not refer to repetitive or 

mass events, we cannot define a collective and, in the frequency interpretation, the 

question is meaningless, since ‘probability’ is meaningfully used only with reference 

to a collective. Hence, many common uses of ‘probability’ in ordinary language 

become illegitimate if we think in terms of the empirical science of probability as 

delineated by von Mises. 

Some may think that this is not an objection at all: von Mises explicates probability 

in a way that legitimizes only some uses of the term as it occurs in ordinary language 

and in this way he deals with the problem of single-case probabilities that burdens the 

frequency interpretation: associating probability with (limiting) relative frequency 
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yields trivial certainty (probability equal to 1) for all unrepeated or unrepeatable 

events. The solution offered by von Mises is to exclude definitionally such events 

from the domain of application of the concept of probability.  

Of course, there are alternative ways to understand probability, not as relative 

frequency, that render its use to unrepeated or unrepeatable events legitimate. Take 

for instance the subjectivist account (see section 5), which considers probability as a 

measure of the degree of belief. In this conception, the question acquires meaning 

requesting the degree of belief an agent would assign to that proposition. In addition, 

to be on the safe side and avoid paradoxes, one may request coherence from the agent, 

i.e., that their degrees of belief satisfy Kolmogorov’s axioms of probability. 

A criticism raised against von Mises’s account by de Finetti underlines that the 

theory fails to deal with the role of probability in induction and confirmation: 

  

If an essential philosophical value is attributed to probability theory, it can only 

be by assigning to it the task of deepening, explaining or justifying the 

reasoning by induction. This is not done by von Mises... (De Finetti 1936) 

 

In response to investigations on probability that aim to produce a theory of induction, 

von Mises claims that probability theory itself is an inductive science and it would be 

circular to try to justify inductive methodology by means of a science that applies it or 

to provide any degree of confirmation for any other branch or science:  

 

According to the basic viewpoint of this book, the theory of probability in its 

application to reality is itself an inductive science; its results and formulas 

cannot serve to found the inductive process as such, much less to provide 

numerical values for the plausibility of any other branch of inductive science, 

say the general theory of relativity. (1928: vii)  

 

However, it’s not that frequency interpretation, in general, does not contribute to the 

problem of induction. As we have examined elsewhere, [IEP entry on The Problem of 

Induction (Psillos and Stergiou, 2022)], Reichenbach thought that the frequency 

interpretation of probability theory provides a new context for understanding the 

problem of induction. 

 

 

c. Are Propensities Probabilities? 
The propensity interpretations are a family of accounts of physical probability. They 

aim to provide an account of objective chance in terms of probability theory. 

Originally, this interpretation has been developed by Karl Popper (1959) but later 

David Miller, James Fetzer, Donald Gillies and others developed their own accounts 

(see, Gillies 2000). Paul Humphreys (1985) describes propensities as: 

 

[I]ndeterministic dispositions possessed by systems in a particular 

environment, exemplified perhaps by such quite different phenomena as a 

radioactive atom’s propensity to decay and my neighbor’s propensity to shout 

at his wife on hot summer days.  

 

The problems that guided Popper to abandon the frequency interpretation of 

probability and to develop this new account had to do, on the one hand, with the 
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interpretation of quantum theory, on the other, with the objective single-case 

probabilities.  

To deal with the problem of single-case probabilities, Popper suggested that 

probabilities should be associated not with sequences of events but with the 

generating conditions of these sequences i.e., “the set of conditions whose repeated 

realisation produces the elements of the sequence” (1959). He claimed that 

“probability may … be said to be a property of the generating conditions” (ibid). This 

was not just an analysis of the meaning of the term ‘probability’. Popper claimed to 

have proposed, “a new physical hypothesis (or perhaps a metaphysical hypothesis) 

analogous to the hypothesis of Newtonian forces. It is the hypothesis that every 

experimental arrangement (and therefore every state of the system) generates physical 

propensities which can be tested by frequencies.” (ibid).  

The propensity interpretation is supposed to avoid a number of problems faced by 

the frequency interpretation; for instance, it avoids the problem of inferring 

probabilities in the limit. But, especially in Popper’s version, it faces the problem of 

specifying the conditions on the basis of which propensities are calculated – the 

ascertainability requirement fails. Given that an event can be part of widely different 

conditions, its propensity will vary according to the conditions. Does it then make 

sense to talk about the true objective singular probability of an event?  

Even if this problem is not taken seriously (after all, the advocate of propensities 

may well claim that propensities are the sort of thing that varies with the conditions), 

it has been argued on other grounds that probabilities cannot be identified with 

propensities. Namely, the so-called inverse probabilities, although they are 

mathematically well-defined, remain uninterpreted since it does not make sense to 

talk about inverse propensities. Suppose, for instance, that a factory produces red 

socks and blue socks and uses two machines (Red and Blue) one for each color. 

Suppose also that some socks are faulty and that each machine has a definite 

probability to produce a faulty sock, say one out of ten socks produced by the Red 

machine are faulty. We can meaningfully say that the Red machine has an one tenth 

propensity to produce faulty socks. But we can also ask the question: given an 

arbitrary faulty sock, what is the probability that it has been produced by the Red 

machine? From a mathematical point of view, the question is well-posed and has a 

definite answer [for a detailed computation of probabilities in a similar example, see 

section 1a above]. But we cannot make sense of this answer under the propensity 

interpretation. We cannot meaningfully ask: what is the propensity of an arbitrary 

faulty sock to have been produced by the Red machine? Propensities, as dispositions, 

possess the asymmetry of the cause-and-effect relation that cannot be adequately 

expressed in terms of the symmetric conditional probabilities. Thus, there are well-

defined mathematical probabilities that cannot be interpreted as propensities (see 

Humphreys 1985).  

Is this really a problem for the propensity interpretation? We would say ‘yes’ if a 

probability interpretation aspires to conform with Kolmogorov’s axioms 

(admissibility requirement) and, also, claims to provide a complete interpretation of 

probability calculus. But this condition is not universally accepted. One may suggest 

that probability interpretations are partial interpretations of the probability calculus or 

even take the more radical position to abandon the criterion of admissibility, as 

Humphreys suggested. 

 

3. Probability as the Logic of Induction 
a. Keynes and The Logical Concept of Probability 
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John Maynard Keynes presented his account of probability in the work titled A 

Treatise on Probability (1921). He attempted to provide a logical foundation for 

probability based on the concept of partial entailment. In deductive logic, entailment, 

considered semantically, expresses the validity of an inference and partial entailment 

is meant to be its extension to inductive logic. From a semantical point of view, 

partial entailment expresses a probability relation between the conclusion of an 

inference and its premises, i.e., that the conclusion is rendered likely true (or more 

likely to be true) given the truth of the premises. Here is how Keynes (1921: 52) 

understood this extension and its relation to probability: 

 

Inasmuch as it is always assumed that we can sometimes judge directly that a 

conclusion follows from a premiss, it is no great extension of this assumption 

to suppose that we can sometimes recognise that a conclusion partially follows 

from, or stands in a relation of probability to a premiss. 

  

And:  

 

We are claiming, in fact, to cognise correctly a logical connection between one 

set of propositions which we call our evidence and which we suppose 

ourselves to know, and another set which we call our conclusions, and to 

which we attach more or less weight according to the grounds supplied by the 

first.... It is not straining the use of words to speak of this as the relation of 

probability. (Keynes 1921: 5–6) 

 

Thus, partial entailment rests on an analogy with deductive (full) entailment and 

both concepts express logical relations, the former of deductive and the latter of 

inductive logic. Here is an example: the conjunction (p and q) entails deductively p; 

by analogy, it is said that, though proposition p does not (deductively) entail the 

conjunction (p and q), it entails it partially, since it entails one of its conjuncts 

(for instance, p). The difference between the two kinds of entailment stems from the 

fact that validity of an inference, expressed in deductive entailment, is a yes-or-no 

question, while the probability relation, expressed in partial entailment, comes in 

degrees. Keynes (1921: 4) considered probability to be the degree of rational belief 

that a future occurrence of an event under specified circumstances is partially entailed 

from past evidence for the occurrence of similar events under similar circumstances:  

 

Let our premises consist of any set of propositions ℎ, and our conclusion 

consist of any set of propositions 𝑎, then, if a knowledge of ℎ justifies a 

rational belief in 𝑎 of degree 𝛼, we say that there is a probability-relation of 

degree 𝛼 between 𝑎 and ℎ. 

  

To say that the probability of a conclusion is high or low given a set of premises is not 

for Keynes a matter of subjective evaluation of the believer. It shares the objectivity 

of any other logical relation between propositions. That is why Keynes (1921: 4) talks 

about the degree of rational belief and not simply of a degree of belief:  

 

... in the sense important to logic, probability is not subjective. It is not, that is 

to say, subject to human caprice. A proposition is not probable because we 

think it so. When once the facts are given which determine our knowledge, 

what is probable or improbable in these circumstances has been fixed 
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objectively, and is independent of our opinion. The Theory of Probability is 

logical, therefore, because it is concerned with the degree of belief which it is 

rational to entertain in given conditions, and not merely with the actual beliefs 

of particular individuals, which may or may not be rational. 

 

 

It should be noted that Keynes based his defense of the logical character of the 

probability relations on what he called “logical intuition”, viz., a certain capacity 

possessed by agents in virtue of which they can simply “see” the logical relation 

between the evidence and the hypothesis. It is in virtue of this shared intuition that 

different agents can have the same rational degree of belief in a certain hypothesis in 

light of certain evidence. This view was immediately challenged by Frank Ramsey, 

who, referring to Keynes’s “logical relations” between statements, noted: “I do not 

perceive them and if I am to be persuaded that they exist it must be by argument” 

(1926, 63). 

It should be clear that for Keynes probability is not always quantitative. He 

believed that qualitative probabilities are meaningful as well and that the totality of 

probabilities, or of degrees of rational belief, may include both numbers and non-

numerical elements. In the usual numerical probabilities, all probabilities lie within 

the unit interval and they are all comparable in terms of the relation ‘being greater 

than or equal to’ as defined in real numbers. This relation induces a complete ordering 

to the unit interval which acquires the structure of a completely ordered set. Since for 

Keynes probabilities may not be numerical, a different interpretation of the relation 

“being more probable than or equally probable to” expressing the comparability of 

probabilities is required. In the class of probabilities, Keynes defines a relation of 

‘between’: 

 

𝐴 is between 𝐵 and 𝐶, (𝐴, 𝐵, 𝐶) 
 

where, for any three probabilities 𝐴, 𝐵, 𝐶 the relation, if satisfied, is satisfied by a 

unique ordered triple (𝐴, 𝐵, 𝐶). He identifies two distinguished probabilities, 

impossibility, 𝑂, and certainty, 𝐼, between which all other probabilities lie. Finally, he 

used the relation of betweenness to compare probabilities: 

 

 If 𝐴 is between 𝑂 and 𝐵, the probability 𝐵 is said to be greater than the 

probability 𝐴. 

 

To illustrate these relations among probabilities, Keynes suggested the following 

diagram. In this diagram, all probabilities comparable in terms of the ‘greater than’ 

relation are connected with a continuous path: 

 

 
  

In Keynes’s (1921: 39) words: 
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𝑂 represents impossibility, 𝐼 certainty, and 𝐴 a numerically measurable 

probability intermediate between 𝑂 and 𝐼; 𝑈, 𝑉,𝑊, 𝑋, 𝑌, 𝑍 are nonnumerical 

probabilities, of which, however, 𝑉 is less than the numerical probability 𝐴, 

and is also less than 𝑊,𝑋, and 𝑌. 𝑋, and 𝑌 are both greater than 𝑊, and 

greater than 𝑉, but are not comparable with one another, or with 𝐴. 𝑉 and 𝑍 

are both less than 𝑊,𝑋, and 𝑌, but are not comparable with one another; 𝑈 is 

not quantitatively comparable with any of the probabilities 𝑉,𝑊, 𝑋, 𝑌, 𝑍. 

Probabilities which are numerically comparable will all belong to one series, 

and the path of this series, which we may call the numerical path or strand, 

will be represented by 𝑂𝐴𝐼.  
 

b. The Principle of Indifference 

To have numerical probabilities between alternative cases, Keynes (1921: 41) 

believed that equiprobability of the alternatives is required: 

 

In order that numerical measurement may be possible, we must be given a 

number of equally probable alternatives.  

And:  

It has always been agreed that a numerical measure can actually be obtained in 

those cases only in which a reduction to a set of exclusive and exhaustive 

equiprobable alternatives is practicable. (1921: 65)  

 

In the terminology of the mathematical theory of probability, Keynes stipulates 

that a real number 𝑝(𝐸|𝐻) denotes the numerical probability of an event 𝐸 given the 

truth of some hypotheses 𝐻, assigned by a function 𝑝 satisfying Kolmogorov’s 

axioms, only if 𝑝(𝐸|𝐻) can be deduced by or it can be reduced to some initial 

numerical probabilities 𝑝(𝐴𝑘|𝐻) assigned to the members of a partition {𝐴𝑘}𝑘=1…𝑛 of 

the event space 𝒮 that satisfy the equiprobability condition: 

 

𝑝(𝐴𝑘|𝐻) = 𝑝(𝐴𝑗|𝐻), 𝑘, 𝑗 = 1, … , 𝑛. 

 

What is the basis of equiprobability and how can it be justified? Keynes (1921: 45) 

suggested that the justification of equiprobability follows from the Principle of 

Indifference which states that: 

  

if there is no known reason for predicating of our subject one rather than 

another of several alternatives, then relatively to such knowledge the 

assertions of each of these alternatives have an equal probability. Thus, equal 

probabilities must be assigned to each of several arguments, if there is an 

absence of positive ground for assigning unequal ones. 

  

The term ‘Principle of Indifference’ was coined by Keynes in the Treatise on 

Probability. According to Ian Hacking (1971), this principle can be traced back to 

Leibniz’s paper “De incerti aestimatione” (1678). In this, Leibniz, anticipating 

Laplace, claimed that: 

 

Probability is the degree of possibility. Hope is the probability of having. Fear 

is the probability of losing. 
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Leibniz considered the above claim as an axiom—something very similar to the 

Principle of Indifference:  

 

Axiom. If players do similar things in such a way that no distinction can be 

drawn between them, with the sole exception of the outcome, there is the same 

proportion of hope to fear.  

 

Moreover, he suggested that we understand this axiom as having its source in 

metaphysics, which seems to be an allusion to the Principle of Sufficient Reason and, 

in particular, to the claim that God does, or creates, nothing without a sufficient 

reason. Applying this metaphysical principle to the expectations of rational agents, 

i.e., ‘players’, we get the foregoing axiom, as Hacking suggested (1975:126): 

 

If several players engage in the same contest in such a way that no difference 

can be ascribed to them (except insofar as they win or lose) then each player 

has exactly the same ground for ‘fear or hope’.   

 

Keynes, however, traces the principle of indifference to Jacques (James) Bernoulli’s 

Principle of Non-Sufficient Reason (1921: 41). Bernoulli in his Ars Conjectandi, 

attempted to calculate the “degree of certainty, or probability, that the argument 

generates” [Notice that by ‘argument’ he meant a piece of evidence.] and he assumed 

that “all cases are equally possible, or can happen with equal ease.” There are 

examples, however, in which a case happens more ‘easily’ than others. Then, 

according to Bernoulli (1713: 219), we need to make a correction: 

 

For any case that happens more easily than the others as many more cases 

must be counted as it more easily happens. For example, in place of a case 

three times as easy I count three cases each of which may happen as easily as 

the rest. 

  

Thus, Bernoulli suggested that to save equiprobability we should consider a finer 

partition of the sample space by subdividing the ill-behaved case into distinct cases.  

Keynes was aware that the principle faces a number of difficulties which take the 

form of a paradox: it predicted contradictory evaluations of probabilities in specific 

cases. To resolve these paradoxes and avoid ill cases, he attempted to provide 

restrictions to the application of the principle of indifference.  

The first paradox is known as the Book Paradox. Consider a book of unknown 

cover color. We have no reason to believe that its color is red rather than not red. 

Hence, by the principle of indifference the probability of being red is 
1

2
. In a similar 

vein, the probability of being green, yellow or blue are all 
1

2
 which contradicts the 

theorem of probability that the sum of probabilities of mutually exclusive events is 

less than or equal to 1. 

The second paradox is the Specific Volume Paradox. Consider the specific volume 

𝑣 of a given liquid and assume that 1 ≤ 𝑣 ≤ 3 in some system of units. Given that 

there is no reason to assume that 1 ≤ 𝑣 ≤ 2 , rather than 2 ≤ 𝑣 ≤ 3, by the principle 

of indifference it is equally likely for the specific volume to lie in each one of these 

intervals. Next, consider the specific density 𝑑 =
1

𝑣
. Given our original assumption, 

we are justified to infer that 
1

3
≤ 𝑑 ≤ 1. Similarly, the principle of indifference 
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maintains that it is equally likely for the specific density to have a value, 
1

3
≤ 𝑑 ≤

2

3
 , 

or to have a value, 
2

3
≤ 𝑑 ≤ 1. Turning now to considerations about specific volume 

we find that it is equally likely that 1 ≤ 𝑣 ≤
3

2
  or  

3

2
≤ 𝑣 ≤ 3. But we have already 

shown that it is as likely 𝑣 to lie between 1 and 2 as between 2 and 3. 

The third paradox that seems to challenge the principle of indifference is 

Bertrand’s paradox. Bertrand in his Calcul des Probabilités (1888) argues that the 

principle of indifference can be applied in more than one way in cases with infinitely 

many possibilities giving rise to contradictory outcomes regarding the evaluation of 

probabilities. In support of his argument he presented, among other examples, his 

famous paradox: We trace at random a chord in a circle. What is the probability that it 

would be longer than the side of the inscribed equilateral triangle? Here are some 

different ways to apply the principle of indifference to solve the problem, each 

leading to different probability values. The first solution assumes that one end of the 

requested chord is at a vertex of the triangle and the other lies on the circumference. 

The circumference is divided in three equal arcs by the vertices of the triangle. From 

all possible chords traced from the given vertex, only those that lie in the arc which 

subtends the angle at that vertex are longer than the side of the equilateral triangle. 

Therefore, the probability is 
1

3
. For the second solution, we assume that the chord is 

parallel to a side of the triangle. From these parallel chords only the ones with 

distance less than one-half of the circle’s radius will have a length greater than the 

side of the inscribed equilateral triangle. Thus, the requested probability is 
1

2
. Finally, 

we yield a third solution by assuming that the chord is defined by its midpoint. Then a 

chord is longer than the side of triangle if its midpoint falls within a concentric circle 

of a radius one-half of the outer circle. The probability is calculated as the ratio of the 

areas of the two circles and is found 
1

4
.  Notice that Bertrand’s Paradox can undermine 

the principle of indifference if and only if the problem at hand is a determinate 

problem with no unique solution. But there is no agreement on that! Many believe 

that the problem is ambiguous or underspecified and, in this sense indeterminate. 

They claim that once we select the set of chords from which we draw one at random, 

the problem has a unique solution by applying the principle of indifference. [For an 

interesting discussion, see Shackel, 2007]. 

To address the Book and the Specific Volume Paradoxes, Keynes suggested that 

we should place a restriction to the application of the Principle of Indifference. We 

should require that given our state of knowledge, the partition of the sample space, 

i.e., the number of alternative cases, is finite, and each alternative cannot be split up 

further into a pair of mutually exclusive sub-alternatives which have non-zero 

probability to occur (see 1921: 60). Now it is obvious that the class of books with a 

non-red cover can be further subdivided into the class of books with a blue cover and 

those with a non-blue cover and so on; thus the adequacy condition for the application 

of the principle is not satisfied. Similarly, in the case of the ranges of values of the 

specific volume and the specific density, the principle does not apply since there is no 

range of values which does not contain within itself two similar ranges. Finally, for 

Bertrand’s paradox, since areas, arcs and segments can be subdivided further into 

non-overlapping parts without a limit, the principle of indifference is not applicable 

(see 1921: 62). Yet, for the geometric example, Keynes suggested a solution. Instead 

of considering as an alternative a point in a continuous line, we may divide that line 

into a finite number of 𝑚 segments, no matter how small, and take as an alternative 
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the segment in which the point under consideration lies. Then we can apply the 

principle of indifference to the 𝑚 alternatives which we consider indivisible. 

However, Keynes solution is not at all clear. Number 𝑚 can be as great as one desires 

on the condition that we keep it finite. Hence, who decides what is the number of 

alternatives to which the principle of indifference is applied? If, on the other hand, we 

allow 𝑚 to increase indefinitely then we get the continuous case we sought to avoid. 

(see Childers 2013: 126)     

 

c. Keynes on the Problem of Induction  

For Keynes, probability is the part of logic that deals with rational but inconclusive 

arguments; and since inductive reasoning is both inconclusive but rational, induction 

becomes inductive logic. The key question, of course, is the following: on what 

grounds one is justified to believe that induction is rational?  

According to Keynes, though Hume’s skeptical claims are usually associated with 

causation, the real object of his attack is induction i.e., the inference from past 

particulars to future generalizations (see 1921: 312). 

Keynes’s argument is the following: 

 

(1) A constant conjunction between two events has been observed in the past. This 

is a fact. Hume does not challenge this at all. 

(2) What Hume challenges is whether we are justified to infer from a past constant 

conjunction between two events that it will also hold in the future. 

(3) This kind of inference is called inductive. 

(4) So, Hume is concerned with the problem of induction.  

 

To see Keynes’s reaction to the problem of induction, let’s first clarify what is for 

him an inductive argument: (1921: 251) 

 

It will be useful to call arguments inductive which depend in anyway on the 

methods of Analogy and Pure Induction.  

 

Arguments from analogy are based on similarities among the objects of a collection, 

on their likeness, while Pure Induction is induction by enumeration. As Keynes (ibid) 

put it: 

 

[w]e argue from … Pure Induction when we trust the number of the 

experiments.  

 

Keynes criticized Hume for not taking into account the analogical dimension of an 

inductive argument by considering the observed instances which serve as premises, as 

absolutely uniform (see 1921: 252).  Instead, Keynes suggested that the basis of Pure 

Induction is the likeness of instances in certain respects (positive analogies) and their 

dissimilarity in others (negative analogies). Only after having verified such a likeness, 

we can single out some features and predict the occurrence of other features or infer a 

generalization of the sort “all A is B”. Hence (1921: 253):  

 

In an inductive argument, therefore, we start with a number of instances 

similar in some respects AB, dissimilar in others C. We pick out one or more 

respects A in which the instances are similar, and argue that some of the other 
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respects B in which they are also similar are likely to be associated with the 

characteristics A in other unexamined cases.  

 

So, assume that a finite number, 𝑛, of instances exhibits a certain group of qualities, 

𝑎1, … , 𝑎𝑟 and single out two subgroups:  

 

𝑎1, 𝑎2, 𝑎3 and 𝑎𝑟−1, 𝑎𝑟 
 

An inductive argument, for Keynes, would conclude that in every instance of 

𝑎1, 𝑎2, 𝑎3, qualities 𝑎𝑟−1, 𝑎𝑟 are also exhibited. Or that 𝑎𝑟−1, 𝑎𝑟 “bound up” with 

qualities  𝑎1, 𝑎2, 𝑎3. (1921: 290) This account of induction presupposes, claims 

Keynes (ibid), that qualities in objects are exhibited in groups and “a sub-class of 

each group [is] an infallible symptom of the coexistence of certain other members of 

it also.”  

However, the world may not co-operate to the success of an inductive argument. 

Keynes identifies three “open possibilities” that would compromise inductive 

generalization: 

(1) Some quality 𝑎𝑟−1 or 𝑎𝑟, may be independent of all other qualities of the 

instances, i.e., there are no groups of qualities that contain the said quality 

and at least some of the others. 

(2) There are no groups to which both 𝑎1, 𝑎2, 𝑎3 and 𝑎𝑟−1, 𝑎𝑟 belong. 

(3) 𝑎1, 𝑎2, 𝑎3 belong to groups that include 𝑎𝑟−1, 𝑎𝑟 and to other groups that do 

not include them. 

In any of the three cases, “All 𝑎1, 𝑎2, 𝑎3’ are 𝑎𝑟−1, 𝑎𝑟” fails. Hence induction fails. 

Keynes (1921: 291) suggested an assumption of probabilistic nature that would 

save us from such ‘pathological’ cases and would lead to a successful induction; 

namely:  

 

If we find two sets of qualities in coexistence there is a finite probability that 

they belong to the same group, and a finite probability also that the first set 

specifies this group uniquely.  

 

If we grant this assumption, then inductive methodology aims to increase the prior 

probability and make it large, in the light of new evidence. But to this point we will 

return later.    

Keynes discusses the justificatory ground of this assumption and shows that it 

requires an a priori commitment to the claim that qualitative variety in nature is 

limited. Although the individuals do differ qualitatively, “their characteristics, 

however numerous, cohere together in groups of invariable connection, which are 

finite in number” (1921: 285). 

This idea is incorporated in the Principle of Limited Variety of a finite system 

(PLV), which Keynes (1921: 286) stated thus:  

 

the amount of variety in the universe is limited in such a way that there is no 

one object so complex that its qualities fall into an infinite number of 

independent groups (i.e. groups which might exist independently as well as in 

conjunction); or rather that none of the objects about which we generalise are 

as complex as this; or at least that, though some objects may be infinitely 

complex, we sometimes have a finite probability that an object about which 

we seek to generalise is not infinitely complex.  
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The gist behind the role of PLV is this. Suppose that although a group of properties, 

say 𝐴 , has been invariably associated with a group of properties, 𝐵, in the past, there 

is an unlimited variety of groups of properties, 𝐵1, … , 𝐵𝑛, such that it is logically 

possible that future occurrences of A will be accompanied by any of the 𝐵𝑖’s, instead 

of 𝐵. Then, and if we let 𝑛 (the variety index) tend to infinity, we cannot even start to 

say how likely it is that 𝐵 will occur given 𝐴, and the past association of 𝐴s with 𝐵s. 

PLV excludes the possibility just envisaged. 

But as PLV stipulates there are no infinitely complex objects; alternatively, the 

qualities of an object cannot fall into an infinite number of independent groups. For 

Keynes, the qualities of an object are determined by a finite number of primitive 

qualities; the latter (and their possible combinations) can generate all apparent 

qualities of an object. Since the number of primitive qualities is finite, the number of 

groups they generate alone or by being combined is finite. Hence, for any two sets of 

apparent properties, Keynes (1921: 292) concludes, there is, “in the absence of 

evidence to the contrary, a finite probability that the second set will belong to the 

group specified by the first set.” 

In any case, Keynes takes it that a generalization of the form ‘All 𝐴s are 𝐵s’ should 

be read thus ‘It is probable that any given 𝐴 is 𝐵’ rather than thus ‘It is probable that 

all 𝐴s are 𝐵s’. So, the issue is the next instance of the observed regularity and not 

whether it holds generally (1921: 287-288). 

The absolute assertion of the finiteness of a system under consideration as 

expressed by the Principle of Limited Variety is called Inductive Hypothesis (IH) 

(1921: 299), and provides one of the premises of an inductive argument; namely, that 

the a priori probability of our conclusion, 𝑝(𝐶|𝐼𝐻), has a finite value. Keynes 

distinguished (IH) from Inductive Method (IM) which amounts to the process of 

increasing the a priori probability of the conclusion, 𝑝(𝐶|𝐼𝐻), by taking into account 

the evidence 𝑒:  

 

𝑝(𝐶|𝑒&𝐼𝐻) >  𝑝(𝐶|𝐼𝐻). 
 

[For the mathematics of Keynes’s account of inductive method and the emergence of 

the need for the inductive hypothesis in order that new evidence strengthen our belief 

in the truth of the conclusion of an inductive argument, the reader may consult 

Appendix 6.c] 

Significantly, Keynes adds that the Inductive Method may be used to strengthen 

the Inductive Hypothesis itself. Since 𝐼𝐻 is a hypothesis and since 𝐼𝑀 is indifferent to 

the content/status of the hypothesis it applies to, it can be applied to 𝐼𝐻 itself. In other 

words, 𝐼𝑀 brings some evidence to bear on the truth of 𝐼𝐻. What Keynes suggests is 

this: 

 

𝑝(𝐼𝐻|𝑒′&𝐼𝐻′ ) > 𝑝(𝐼𝐻|𝐼𝐻′), 
 

where 𝐼𝐻′ is another general hypothesis, “more primitive and less far-reaching” than 

𝐼𝐻 such that 𝑝(𝐼𝐻|𝐼𝐻′) has a finite value, and 𝑒′ other evidence. The argument is 

non-circular since the justification of the inductive hypothesis is not accomplished by 

the hypothesis itself but in terms of some other hypothesis more fundamental, by 

means of inductive method. Of course, the account runs the risk of exchanging 

circularity for infinite regress unless there exist some primitive inductive hypothesis. 

But what would such a primitive inductive hypothesis be? We are left in the dark: 
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We need not lay aside the belief that this conviction gets its invincible 

certainty from some valid principle darkly present to our minds, even though it 

still eludes the peering eyes of philosophy. (1921: 304) 

 

However, in the end of the day, Keynes simply argues that a non-zero (finite) a 

priori probability is assigned to the inductive hypothesis 𝐼𝐻 (which is equivalent to 

PLV). What would be the reason to assign an a priori non-zero probability to the 

inductive hypothesis 𝐼𝐻? Keynes answer, honest to the bone, shows the limitations of 

all attempts to satisfy the inductive sceptic: “It is because there has been so much 

repetition and uniformity in our experience that we place great confidence in it.” 

(1921: 289-290) 

It seems we cannot do better than relying on past experience. The Inductive 

Hypothesis that supports induction, PLV in Keynes’s case, is neither a self-evident 

logical axiom nor an object of direct acquaintance (1921: 304). But nevertheless, he 

insists that it is true of some factual systems. How do we know this? By past 

experience! 

 

d. On the Rule of Succession  

Before we leave Keynes let us consider his critique of Laplace’s Rule of Succession, 

i.e., the theorem of mathematical probability which claims that if an event has 

occurred m times in succession, then the probability that it will occur again is 
𝑚+1

𝑚+2
.  

As discussed elsewhere [see our entry in IEP on The Problem of Induction (Psillos 

and Stergiou, 2022)] Venn had reasons not to “take such a rule as this seriously.” 
(1888: 197), but Keynes’s criticism goes well beyond these reasons.   

The crux of Keynes’ criticism consists in that the derivation of the rule of 

succession combines two different methods for the determination of the probability of 

an event which yield different probability values. Thus, their combination is 

inconsistent and it includes a latent contradiction.  

Consider several possible events 𝐸1, 𝐸2, … , 𝐸𝑛 that are alternatives, i.e., they are 

mutually exclusive and exhaustive of the sample space, and choose any one of them, 

𝐸𝑖.  
The first method stipulates that “when we do not know anything about an 

alternative, we must consider all the possible values of the probability of the 

alternative; these possible values can form in their turn a set of alternatives, and so on. 

But this method by itself can lead to no final conclusion.” (1921: 426) Let the 

probability of the alternative be 𝑝(𝐸𝑖). The method stipulates that we should consider 

all probability values of 𝐸𝑖 assigned by any admissible probability functions 𝑝. These 

probability values for 𝐸𝑖 form another set of alternatives, say, 𝑝1(𝐸𝑖),… , 𝑝𝑛(𝐸𝑖),… 

And the same process may be repeated, again and again, involving us in an infinite 

regress. Thus, the first method is inconclusive.  

The second method applies the principle of indifference stipulating that “when we 

know nothing about a set of alternatives, we suppose the probabilities of each of them 

to be equal.” (ibid) Thus, the second method concludes that, 𝑝(𝐸1), = ⋯ =  𝑝(𝐸𝑛). 
Consider the event that 𝐸1: “the sun will rise tomorrow” and its alternative that the 𝐸2: 

“the sun will not rise tomorrow”. If we apply the first method only, we reach no 

conclusion about probability and we are involved in infinite regress. Secondly, if we 

apply the second method only, we obtain 𝑝(𝐸1) =  𝑝(𝐸2) =
1

2
. Finally, in deriving the 

rule of succession both methods are applied subsequently. Namely, the probability of 



 24 

𝐸1 is unknown, and any probability value is possible according to the first method. 

Thus, we form a set of alternatives for the probability of 𝐸1 which, at a second stage 

are reduced to the equal probability case by applying the second method. This 

reasoning is presupposed by the rule of succession.  

The latent contradiction included in the rule of succession is that for its derivation 

it is assumed that the a priori probability of the event can be any number in the 

interval [0,1], with all numbers being equally probable, while by application of the 

rule the a priori probability, calculated in the absence of any observations (𝑁=0)  is  
1

2
.  

In Keynes’s (1921: 430) own words: 

 The principle’s conclusion is inconsistent with its premises. We begin with the 

assumption that the a priori probability of an event, about which we have no 

information and no experience, is unknown, and that all values between 0 and 1 are 

equally probable. We end with the conclusion that the a priori probability of such an 

event is 
1

2
 … this contradiction was latent, as soon as the Principle of Indifference was 

superimposed on the principle of unknown probabilities. 

 

 

4. Carnap’s Inductive Logic 
a. Two Concepts of Probability 

Carnap presented his views of probability and induction mainly in the two books 

entitled the Logical Foundations of Probability (1950) and The Continuum of 

Inductive Methods (1952) and in his papers “A basic system of inductive logic, I, II” 

(1971 and 1980, respectively) and “Replies and Systematic Expositions” (1963). For 

Carnap, the theory and principles of inductive reasoning, inductive logic, is the same 

as probability logic (1950, v) and the primary task to be set toward an account of 

inductive logic is the explication of probability.  

Explication, according to Carnap (1950: 3), is the transformation of an inexact, 

possibly prescientific concept, the explicandum, into a new exact concept, the 

explicatum, that obeys explicitly stated rules for its use. By means of this 

transformation a concept of ordinary discourse or a metaphysical concept may be 

incorporated into a well-structured body of logico-mathematical or empirical 

concepts. Explication has a long history as a philosophical method that, in a wide 

sense, may be traced back even to Plato’s investigations on definitions. Strictly 

speaking, however, Carnap borrowed the term “Explikation” from Kant and Husserl 

while Frege may be considered his precursor in this method of philosophical analysis 

and Goodman, Quine and Strawson among his prominent intellectual inheritors. [For 

a general presentation of the notion explication, consult IEP’s entry on Explication, 

(Cordes and Siegwart 2019).] 

Two concepts are distinguished as explicanda of probability according to Carnap: 

the logical or inductive probability, called ‘probability1’ and the statistical probability, 

called ‘probability2’. Both concepts are important for science and lack of recognition 

of this fact, Carnap claimed, has fueled many futile controversies among 

philosophers. The meaning of probability2 is that of relative frequency of a kind of 

event in a long sequence of events, and in science it is applied to the description and 

statistical analysis of mass phenomena. All sentences about statistical probability are 

factual, empirical.  

The logical concept of probability, probability1, is the basis for all inductive 

reasoning. For Carnap (1950: 2), the problem of induction is the problem of the 

logical relation between a hypothesis and some confirming evidence for it and 
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“inductive logic is the theory based upon what might be called the degree of 

inducibility, that is, the degree of confirmation.” Hence, by taking probability1 to 

mean “the degree of confirmation of a hypothesis ℎ with respect to an evidence 

statement 𝑒, e.g., an observational report” (1950: 19) Carnap made it the basis of 

inductive logic. As for any logical sentence, the truth or falsity of sentences about 

probability1 is independent of extralinguistic facts.  

In addition, logical probability is an objective concept, i.e., “if a certain 

probability1 value holds for a certain hypothesis with respect to a certain evidence, 

then this value is entirely independent of what any person may happen to think about 

these sentences, just as the relation of logical consequence is independent in this 

respect.”(1950: 43) The objectivity of probability1, Carnap recognized it in the views 

of Keynes and Jeffreys who interpreted probability in terms of rational degrees of 

beliefs as distinguished from subjective, actual degrees of belief a person might bear 

on the truth of a sentence given some evidence. Later, he (1963: 967) came to accept 

the interpretation of probability1 as “the degree to which [one]… is rationally entitled 

to believe in ℎ on the basis of 𝑒.”  

 

b. C-functions 

Carnap suggested three different concepts of confirmation. The classificatory concept 

of confirmation, which expresses a logical relation between a piece of evidence 𝑒 and 

a hypothesis ℎ and, if satisfied, it qualifies the former as a confirming instance of the 

latter. To signify the explicatum of this concept, Carnap used the symbol ‘ℭ’and  

ℭ(ℎ, 𝑒) corresponds to “ℎ is confirmed (or, supported) by 𝑒”. The second concept of 

confirmation he employed is the comparative concept which compares the strength by 

which a piece of evidence 𝑒1 confirms a hypothesis ℎ1 with the corresponding 

strength by which 𝑒2 confirms ℎ2. Thus, comparative confirmation requires the 

underlying classificatory confirmation and it is, in general, a tetradic relation. Its 

explicatum is symbolized by ‘𝔐ℭ’, where 𝔐ℭ(ℎ1, 𝑒1, ℎ2, 𝑒2) corresponds to the 

statement ‘'ℎ1 is confirmed by 𝑒1 at least as strongly (i.e., either more, or equally, 

strongly) as ℎ2 by 𝑒2”. Finally, there is a quantitative (or, metrical) concept of 

confirmation, the degree of confirmation, which assigns a numerical value to the 

degree to which a hypothesis ℎ is supported by given observational evidence 𝑒. The 

explicatum of this concept is symbolized by ‘𝔠’, where 'the degree of ‘𝔠(ℎ, 𝑒) = 𝑟’ is 

the statement, “the degree of confirmation of ℎ with respect to 𝑒 is 𝑟”, where ℎ and 𝑒 

are sentences and 𝑟 a real number in the unit interval. 

In this context, Carnap points out that Keynes’s objective conception of probability 

is similar to the comparative concept of confirmation and only in some special cases, 

when the principle of indifference is applicable, it can be interpreted quantitatively 

similar to his concept of degree of confirmation (1950: 45 & 205). Moreover, notice 

that all three conceptions of confirmation Carnap (1950: 19) suggested are 

semantical: 

 

The concepts of confirmation to be dealt with in this book are semantical,  

i.e., based upon meaning, and logical, i.e., independent of facts. 

  

The inductive relation the three concepts of confirmation attempt to explicate is not 

determined by the form of the sentences, as Hempel required in his syntactic account 

of confirmation (1945), nor depend on the users of a language, as Goodman suggested 

in his pragmatic solution of the new riddle of induction (1955) (See also our other 

entry in IEP on The Problem of Induction (Psillos and Stergiou, 2022)). Rather: 
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[O]nce ℎ and 𝑒 are given, the question mentioned requires only that we be able 

to understand them, that is, to grasp their meanings, and to establish certain 

relations which are based upon their meanings (1950: 20). 

 

Carnap begins with the construction of the language(s) in which inductive logic is 

to be applied. He defines several language systems each one characterized by the 

number of names (constants) it contains (1950: 58). Each name refers to individuals in 

the corresponding universe of discourse, be they things, events, or the like. Thus, he 

considered an infinite language system 𝔏∞, having an infinite number of names and a 

sequence 𝔏1, 𝔏2, … , 𝔏𝑁, … of language systems each one characterized by the index 𝑁 

that runs through all positive integers indicating the number of names the system 

includes. Hence, 𝔏1 contains only '𝑎1'; 𝔏2 contains '𝑎1' and '𝑎2'; etc. Notice that any 

sentence of 𝔏∞ is contained in an infinite number of finite language systems of the 

hierarchy since if ‘𝑎𝑁’ is the name with highest subscript that appears in that sentence, 

then this sentence will be represented in any language system 𝔏𝑛 with 𝑛 ≥ 𝑁. Apart 

from names, 𝔏∞ contains a finite number of primitive (atomic) predicates of any 

degree (unary, binary etc.) designating properties and relations among individuals in 

the universe of discourse. Carnap considered only three connectives as primitive for 

his language systems: the negation ‘~’, the conjunction ‘&’ and the inclusive 

disjunction ‘∨’ – and he defined implication and biconditional in terms of these three. 

Each language system contains an infinite number of variables, 𝑥, 𝑦, 𝑧, 𝑥1, 𝑥2…, and 

two quantifiers, the existential ‘(∃𝑥)’ and the universal one, ‘(𝑥)’. The sentence 

‘(𝑥)𝑃𝑥’ is taken to be logically equivalent to ‘𝑃𝑎1&𝑃𝑎2…&𝑃𝑎𝑁’ in a language 𝔏𝑁, 

according to the semantics adopted. The same is not true for the case of 𝔏∞ since in 

this case the conjunction of an infinite number of sentences is not a well-formed 

formula of the language. Apart from the atomic predicates, molecular predicates may 

be defined. They are formed by atomic or more basic molecular predicates with the 

help of connectives. For example, if 𝑃1, 𝑃2, 𝑃3 are atomic predicates, then ‘~𝑃1’ or 

‘𝑃1&𝑃2’ or ‘𝑃1 ∨ 𝑃3’ are molecular predicates understood as follows: for any variable 

𝑥, (~𝑃1)𝑥 stands for ‘~(𝑃
1
𝑥)’; (𝑃1&𝑃2)𝑥 for ‘𝑃1(𝑥)&𝑃2(𝑥)’; and (𝑃1 ∨ 𝑃3)𝑥 for 

‘𝑃1(𝑥) ∨ 𝑃3(𝑥)’. Finally, language systems contain an equality symbol ‘=’ 

designating identity of individuals in the universe of discourse and a tautological 

sentence ‘𝑡’. As any language, these language systems are equipped with some rules 

for the formation of well-formed formulas (sentences) and some rules of truth, i.e., a 

semantics.  

A state description 𝔙 is an explication of the vague concept of a state of affairs 

relativized to a given language system 𝔏 (1950: 70ff). It purports to describe possible 

states of the universe of discourse of 𝔏. A state description describes for every 

individual designated by some name ‘𝑎’ and for every property designated by an 

atomic predicate ‘𝑃’ of 𝔏 whether or not this individual has that property, and 

similarly for relations. Thus, a state description will contain exactly one sentence from 

the pair ‘𝑃𝑎’, ‘~𝑃𝑎’: either ‘𝑃𝑎’ or ‘~𝑃𝑎’ but not both, and no other element 

(similarly for relations).  In the case of a finite language system 𝔏𝑁, a state description 

has the form of a conjunction of sentences of the aforementioned sort while in the 

case of an infinite language system 𝔏∞, a state description is a class of sentences that 

contains at most one sentence of the aforementioned sort. In both cases nothing more 

is included in a state description. The class of all state descriptions in a given system 

𝔏 is designated by ‘𝑉𝔙’ while the null class by ‘𝛬𝔙’. 
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For example, consider a language system 𝔏3 with names, ‘𝑎’, ‘𝑏’ and ‘𝑐’ and a 

single atomic unary predicate symbol ‘𝑃’. The complete set of state descriptions is the 

following: 

 

𝖁𝟏 ‘𝑷𝒂&𝑷𝒃&𝑷𝒄’ 𝖁𝟓 ‘~𝑷𝒂&~𝑷𝒃&𝑷𝒄’ 

𝖁𝟐 ‘~𝑷𝒂&𝑷𝒃&𝑷𝒄’ 𝔙6 ‘~𝑃𝑎&𝑃𝑏&~𝑃𝑐’ 
𝖁𝟑 ‘𝑷𝒂&~𝑷𝒃&𝑷𝒄’ 𝔙7 ‘𝑃𝑎&~𝑃𝑏&~𝑃𝑐’ 
𝖁𝟒 ‘𝑷𝒂&𝑷𝒃&~𝑷𝒄’ 𝔙8 ‘~𝑃𝑎&~𝑃𝑏&~𝑃𝑐’ 

 

The adequacy of a language system 𝔏 for inductive logic requires compliance with 

two important conditions: the requirement of logical independence and the 

requirement of completeness. The first condition aims at restricting the language 

system to bar contradictory state descriptions. The requirement of logical 

independence stipulates (i) that atomic sentences (i.e. sentences that consist of an 𝑛-

place predicate and 𝑛 names ) are logically independent, i.e. a class containing atomic 

sentences (e.g. sentences of the form 𝑃𝑎 for a predicate ‘𝑃’ and a name ‘𝑎’) and the 

negations of other atomic sentences does not entail logically entail another atomic 

sentence or its negation; (ii) names in 𝔏 designate different and separate individuals; 

(iii) atomic predicates are interpreted to designate logically independent attributes.  

The requirement of completeness of language stipulates that the set of the atomic 

predicates of 𝔏 be sufficient for expressing every qualitative attribute of the 

individuals in the universe of discourse of 𝔏. This requirement seemed absolutely 

necessary for the Carnapian system, since the language systems affect the 𝔠-values in 

the theory of inductive logic. For the time being, all we need to stress is that this 

requirement implies that a language system 𝔏 mirrors its universe of discourse. 

Whatever there is in it can be exhaustively expressed within 𝔏. Here is Carnap’s 

example (1950: 75). Take a language system 𝔏 with only two predicates, ‘ 𝑃1’ and 

‘𝑃2’ interpreted as Bright and Hot. Then, every individual in the universe of discourse 

of 𝔏 should differ only with respect to these two attributes. If a new predicate ‘𝑃3’, 

interpreted as Hard, were added, the 𝔠 -values of hypotheses concerning individuals in 

𝔏 would change. Even if this simple scheme holds (or might hold) in a simple 

language, can it be adequate for the language of natural sciences? A similar 

requirement had been proposed by Keynes, in the form of the Principle of Limited 

Variety (see section 3c above). 

Later on, Carnap abandoned this requirement and replaced it with the following: 

The value of the confirmation function 𝔠(ℎ, 𝑒) remains unchanged if further families 

of predicates are added to the language (see 1963: 975). According to this 

requirement, the value of 𝔠(ℎ, 𝑒) depends only on the predicates occurring in h and e. 

Hence, the addition of new predicates to the language does not affect the value of 

𝔠(ℎ, 𝑒). This new idea amounts to what Lakatos (1968: 325) called the minimal 

language requirement, according to which the degree of confirmation of a proposition 

depends only on the minimal language in which the proposition can be expressed.  

Another important concept defined by Carnap is that of the range of a sentence or 

of a collection of sentences (1950: 78). The range of a sentence 𝑖, ℜ(𝑖), is the class of 

those state descriptions in which that sentence holds. A (molecular) sentence of the 

form ‘𝑃𝑎 or ~𝑃𝑎’ for a atomic predicate ‘𝑃’ and some name ‘𝑎’ holds in a state 

description 𝔙 if it is either a conjunct in 𝔙’s defining conjunction or it belongs to the 

class of sentences that define 𝔙. Analogously, if a sentence is a conjunction of 

sentence, then all components of the conjunction should hold for a state description 
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while if it is a disjunction, at least one disjunct should hold in a state description – so 

that the state description partake of the sentence’s range. Notice that a tautology holds 

in all state descriptions. For instance, in the previous example, the range of 𝑃𝑎&𝑃𝑏 is 

ℜ(𝑃𝑎&𝑃𝑏) = {𝔙1,𝔙4, } while the range of 𝑃𝑎 ∨ 𝑃𝑏 is ℜ(𝑃𝑎 ∨ 𝑃𝑏) =
{𝔙1,𝔙2,𝔙3,𝔙4,𝔙6, 𝔙7}. Finally, the range of a class of sentences is the class of 

state descriptions in which every sentence of class holds.  

As a final step before defining the 𝔠-function, we present Carnap’s account of 

logical concepts in a system 𝔏 in terms of state descriptions and the concept of range: 

a sentence 𝑖 is L-true in 𝔏 if and only if ℜ(𝑖) is 𝑉𝔙 while it is L-false in 𝔏 if and only 

if ℜ(𝑖) is 𝛬𝔙; a sentence 𝑖 L-implies 𝑗 in 𝔏 if and only if ℜ(𝑖) ⊂ ℜ(𝑗); 𝑖 is L-

equivalent to 𝑗 in 𝔏 if and only if ℜ(𝑖) = ℜ(𝑗); 𝑗1, 𝑗2, … , 𝑗𝑛 (𝑛 ≥ 2) are L-disjunct 

with one another in 𝔏 if and only if ℜ(𝑗1) ∪ ℜ(𝑗2) ∪ …∪ ℜ(𝑗𝑛) is 𝑉𝔙; 𝑖 is L-exclusive 

of 𝑗 in 𝔏 if and only if ℜ(𝑖) ∩ ℜ(𝑗) is 𝛬𝔙; a class of sentences is L-exclusive in pairs 

if and only if every pair of the class is L-exclusive of every other sentence of that 

class. L-truth is the explicatum for logical truth or analytical truth while L-false for 

contradiction. L-implication is the explicatum for logical entailment while L-

equivalence explicates mutual deducibility and it is the same as mutual L-implication. 

L-disjunctness applied to a set of sentences explicates the idea that at least one of 

those sentences is true and L-exclusion explicates logical incompatibility or logical 

impossibility of joint truth.  

For the sake of simplicity, in this presentation we focus on finite language systems. 

Thus, 𝔪 is a regular measure function (briefly, a regular 𝔪-function) for 𝔙 in 𝔏𝑁 if 

and only if it fulfills the following two conditions: (a) for every 𝔙𝑖 in 𝔏𝑁, 𝔪(𝔙𝑖) ∈ ℝ; 

(b) the sum of the values of 𝔪 for all 𝔙 in 𝔏𝑁 is 1, ∑ 𝔪(𝔙𝑖)𝔙𝑖 = 1. The regular 𝔪-

function for 𝔙 can be extended to a regular 𝔪-function for the sentences in 𝔏𝑁 by 

requiring the following: (a) for any L-false sentence 𝑗 in 𝔏𝑁, 𝔪(𝑗) = 0 ; (b) for any 

non-L-false sentence 𝑗, 𝔪(𝑗) = ∑ 𝔪(𝔙)𝔙∈ℜ(𝑗)  (Carnap 1950: 295).  

In the example of the language system 𝔏3 considered previously, a regular 𝔪-

function for state descriptions is defined as follows: 

 

𝔪(𝔙𝑖) =
1

12
, for 𝑖 = 1,3,4,7 𝔪(𝔙𝑖) =

1

6
, for 𝑖 = 2,5,6,8. 

 

It is extended to a regular 𝔪-function for sentences that assigns numerical values to 

sentences, e.g.,  

 

𝔪(𝑃𝑎&~𝑃𝑎) = 0 ;  𝔪(𝑃𝑎 ∨ ~𝑃𝑎) = 1 

𝔪(𝑃𝑎&𝑃𝑏) = ∑ 𝔪(𝔙𝑖)

𝑖=1,4

=
1

6
   ;   𝔪(𝑃𝑎 ∨ 𝑃𝑏) = ∑ 𝔪(𝔙𝑖)

𝑖=1,2,3,4,6,7

=
2

3
. 

 

A regular confirmation function is defined as a two-argument function for 

sentences on the basis of a regular 𝔪-function for sentences in 𝔏𝑁. Namely, let 𝔪 be a 

regular 𝔪-function for sentences in 𝔏𝑁, then 𝔠 is a regular confirmation function 

(briefly, a regular 𝔠-function) for sentences in 𝔏𝑁 if and only if for any sentences 𝑒, ℎ 

in 𝔏𝑁,  

 

𝔠(ℎ, 𝑒) =
𝔪(𝑒&ℎ)

𝔪(𝑒)
, 
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where 𝔪(𝑒) ≠ 0 and 𝔠(ℎ, 𝑒) has no value, where 𝔪(𝑒) = 0 (Carnap 1950: 295). 

In the aforementioned example, if 𝑒 stands for the L-false sentence ‘𝑃𝑎&~𝑃𝑎’, 

𝔠(ℎ, 𝑒) is not defined for any hypothesis ℎ. L-false sentences cannot be evidence for 

or against any hypothesis. However, if an L-false sentence, e.g., ‘𝑃𝑎&~𝑃𝑎’, is taken 

as hypothesis ℎ, then 𝔠(ℎ, 𝑒) = 0, for any admissible piece of evidence 𝑒. Consider an 

L-true sentence, such as ‘ 𝑃𝑎 ∨ ~𝑃𝑎’, as hypothesis ℎ. Then 𝔠(ℎ, 𝑒) = 1 no matter 

what the admissible evidence might be; no evidence can increase or decrease the 

degree of confirmation of a logical truth (obviously, 𝑒 is not L-false). In other cases, 

e.g., for the hypothesis ℎ, ‘𝑃𝑎’ and the evidence 𝑒, ‘𝑃𝑏’, 𝔠(𝑃𝑎, 𝑃𝑏) =
𝔪(𝑃𝑎&𝑃𝑏)

𝔪(𝑃𝑏)
=

1/6

1/2
=
1

3
. 

A regular 𝔠-function is a conditional probability function in the common parlance 

of mathematical theory of probability since it satisfies Kolmogorov’s axioms. This 

was a desideratum for Carnap who stipulated that an adequate concept of degree of 

confirmation should fulfill the following conditions (1950: 285): 

 

(a) L-equivalent evidences. If 𝑒 and 𝑒′ are L-equivalent, then 𝔠(ℎ, 𝑒) = 𝔠(ℎ, 𝑒′). 
(b) L-equivalent hypotheses. If ℎ and ℎ′ are L-equivalent, then 𝔠(ℎ, 𝑒) = 𝔠(ℎ′, 𝑒). 
(c) General Multiplication Principle. 𝔠(ℎ&𝑗, 𝑒) = 𝔠(ℎ, 𝑒) ∙ 𝔠(𝑗, 𝑒&ℎ). 
(d) Special Addition Principle. If 𝑒&ℎ&𝑗 is L-false, then 𝔠(ℎ ∨ 𝑗, 𝑒) = 𝔠(ℎ, 𝑒) +

𝔠(𝑗, 𝑒) 
(e) Maximum Value. For any not L-false 𝑒 𝔠(𝑡, 𝑒) = 1, 

where ℎ, ℎ′, 𝑒, 𝑒′, 𝑗 are any sentences in 𝔏𝑁 and 𝑡 is a logical truth. Conditions, (a) 

and (b) demand that the explicatum of the degree of confirmation should respect 

logical equivalence. The General Multiplication Principle is derived mathematically 

directly from the definition of conditional probability. The Special Addition Principle 

is recognized as the additivity axiom in Kolmogorov’s formulation which gives rise to 

the finite additivity condition and the Maximum Value condition corresponds to the 

fact probability of the sample space is 1.  

To recover unconditional probability functions for sentences in 𝔏𝑁 , Carnap 

suggested to consider the probability of any sentence conditionally to a tautology. 

Namely, if 𝔠 is a regular confirmation function for 𝔏N, then for every sentence 𝑗 in 𝔏𝑁, 

the null confirmation 𝔠0 is 𝔠0(𝑗) = 𝔠(𝑗, 𝑡). Moreover, he showed that 𝔠0(𝑗) = 𝔪(𝑗). The 

null confirmation represents the prior probability of a sentence in the absence of any 

evidence (1950: 307-8). 

In the example of the language system 𝔏3 considered previously we suggested a 

regular 𝔪-function that assigns different real numbers to different state descriptions, 

i.e., to different states in the universe of discourse. However, is there any reason to 

believe that these numbers should be unequal? Is there any reason to believe that one 

state description weighs more than any other? Rather, by application of the principle 

of indifference, it seems that we should demand equal distribution of weight to all 

state descriptions,  

 

𝔪+(𝔙) =
1

𝜁
 

 

where 𝜁 is the number of the state descriptions in 𝔏𝑁 (Carnap, 1950: 564). Moreover, 

it is easy to show that for any given piece of evidence 𝑒 and for every pair of state 

description 𝔙𝑖, 𝔙𝑗 compatible with 𝑒, it holds:  
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𝔠+(𝔙𝑖, 𝑒) = 𝔠
+(𝔙𝑗, 𝑒). 

 

Of course, the principle of indifference entails equiprobability only for state 

descriptions and not for all sentences, in a way that Keynes would appreciate, since he 

was the first to suggest restricted application of the principle of indifference to 

possibilities that are mutually exclusive and exhaustive of the sample space, to avoid 

the Book paradox. Salmon (1966: 72) notes that Carnap’s “…explication of 

probability in these terms has been thought to preserve the ‘valid core’ of the 

traditional principle of indifference”. 

Nevertheless, Carnap has shown that to suggest a regular 𝔪-function for 𝔙 in 𝔏 

that assigns equal weight to all state descriptions, although intuitively plausible, has 

deeply undesirable consequences: it inhibits learning from experience. To see why 

consider a language 𝔏𝑁+1, with a single unary atomic predicate 𝑃. We want to 

calculate the degree of confirmation of the hypothesis that the (𝑁 + 1)th individual 

will have the property 𝑃, i.e., ℎ: ‘𝑃𝑎𝑁+1’, given the evidence that all individuals 

examined so far had the property 𝑃, i.e., 𝑒: ‘𝑃𝑎𝑁&…&𝑃𝑎1’. The number of state 

descriptions is 2𝑁+1, hence, the 𝔪+ regular 𝔪-function assigns equal weight to all 

state descriptions, 𝔪+(𝔙) = 
1

2𝑁+1
 . First, notice that ℎ&𝑒 and ~ℎ&𝑒 are state 

descriptions; hence, 𝔪+(ℎ&𝑒) = 𝔪+(~ℎ&𝑒) =
1

2𝑁+1
 . Second, sentences 𝑒 and 

(ℎ&𝑒) ∨ (~ℎ&𝑒) are L-equivalent and  𝔪+(𝑒) = 𝔠0
+(𝑒) = 𝔠+(𝑒, 𝑡). By the L-

equivalent-hypotheses condition, 𝔪+(𝑒) = 𝔠+((ℎ&𝑒) ∨ (~ℎ&𝑒), 𝑡); and by the Special 

Addition Principle, 𝔪+(𝑒) = 𝔠+(ℎ&𝑒, 𝑡)+ 𝔠+(~ℎ&𝑒, 𝑡) = 𝔠0
+(ℎ&𝑒)+ 𝔠0

+(~ℎ&𝑒) =

𝔪+(ℎ&𝑒)+ 𝔪+(~ℎ&𝑒) =
1

2𝑁+1
+

1

2𝑁+1
=

2

2𝑁+1
. Hence,  

 

𝔠+(ℎ, 𝑒) =
𝔪+(ℎ&𝑒)

𝔪+(𝑒)
=

1

2𝑁+1
 

2

2𝑁+1

=
1

2
 

 

Moreover, by a simple calculation 

 

𝔠0
+(ℎ) = 𝔪+(ℎ) = ∑ 𝔪+(𝔙)

𝔙∈ℜ(ℎ)

= 2𝑁
1

2𝑁+1
=
1

2
. 

 

i.e., 

 

𝔠+(ℎ, 𝑒) = 𝔠0
+(ℎ). 

 

The last equality yields the desired conclusion: the degree of confirmation of a 

hypothesis is independent of the evidence collected in a given population. No matter 

how many positive instances of a given property one observes in a population, their 

guess regarding the appearance of the property in the next individual is not better 

justified than if no observations were made; thus learning does not come from 

experience (1950: 564-5). 

To avoid this difficulty, Carnap suggested to apply the principle of indifference in 

a different way. Instead of distinguishing states of affairs in terms of properties and 

relations instantiated by certain individuals, Carnap grouped all states of affairs 
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instantiating the same properties and relations, independently of the individuals that 

instantiated them, and distinguished only among these classes. Hence, we should not 

focus anymore on state descriptions describing possible states of the universe of 

discourse for a language system but on classes of such state descriptions in which any 

two state descriptions are isomorphic to one another. Two sentences 𝑖, 𝑗 in 𝔏𝑁 are 

isomorphic if 𝑗 is formed from 𝑖 by replacing each individual constant occurring in 𝑖 
by its correlate with respect to a one-to-one relation among all individual constants in 

𝔏𝑁. These classes are called structure descriptions, 𝔖𝔱𝔯. They describe the common 

structure attributed to the realm of individuals by a class of state descriptions. For 

instance, a structure description may express the fact that there are exactly two 

individuals in the universe of discourse possessing a given property 𝑃 or that none of 

the individuals bears the relation 𝑅 to itself, or that relation 𝑅 is satisfied by pairs of 

individuals non-symmetrically - i.e., if for all individual constants 𝑎, 𝑏 𝑅𝑎𝑏 and ~𝑅𝑏𝑎 

are both satisfied - etc. Now the principle of indifference applies in two stages: firstly, 

following the principle we assign equal weight to all structure descriptions and, 

secondly, within each structure description we assign equal weight to all isomorphic 

state descriptions. Thus, for a state description 𝔙𝑖 in a language system 𝔏𝑁, if 𝜏 is the 

number of structure descriptions 𝔖𝔱𝔯 and 𝜁𝑖 the number of all state descriptions that 

are isomorphic to 𝔙𝑖, we define (1950: 564) the regular 𝔪-function for 𝔙: 

 

𝔪∗(𝔙𝑖) =
1

𝜏 ∙ 𝜁𝑖
. 

 

To illustrate the relation between state descriptions and structure descriptions and 

the difference between the values of 𝔪+, 𝔪∗ regular 𝔪-functions, consult the 

following table which represents the example of 𝔏3 with a single predicate 𝑃:  

  
STATE 

DESCRIPTIONS 
WEIGHT 

STRUCTURE 

DESCRIPTIONS 
WEIGHT 𝖒+ 𝖒∗ 

𝑷𝒂&𝑷𝒃&𝑷𝒄 1/8 All 𝑃s, no~𝑃s 1/4 1/8 1/4 

~𝑷𝒂&𝑷𝒃&𝑷𝒄 1/8 

2 𝑃s, 1 ~𝑃 1/4 

1/8 1/12 

𝑷𝒂&~𝑷𝒃&𝑷𝒄 1/8 1/8 1/12 

𝑷𝒂&𝑷𝒃&~𝑷𝒄 1/8 1/8 1/12 

~𝑷𝒂&~𝑷𝒃&𝑷𝒄 1/8 

1 𝑃, 2 ~𝑃 1/4 

1/8 1/12 

~𝑷𝒂&𝑷𝒃&~𝑷𝒄 1/8 1/8 1/12 

𝑷𝒂&~𝑷𝒃&~𝑷𝒄 1/8 1/8 1/12 

~𝑷𝒂&~𝑷𝒃&~𝑷𝒄 1/8 No 𝑃s, all ~𝑃s 1/4 1/8 1/4 

 

Let’s now revisit the problem of determining the degree of confirmation of the 

hypothesis that the (𝑁 + 1)th individual will have the property 𝑃, i.e., ℎ: ‘𝑃𝑎𝑁+1’, 

given the evidence that all individuals examined so far had the property 𝑃, i.e., 𝑒: 

‘𝑃𝑎𝑁&…&𝑃𝑎1’ in a language 𝔏𝑁+1 with a single unary predicate 𝑃. Since our 

language contains 𝑁 + 1 individual constants, a structure description is determined by 

the number of instances of the property 𝑃 we find in the universe of discourse 

disregarding the identity of the individuals that instantiate the property. Thus, all state 

descriptions that are isomorphic to ‘𝑃𝑎𝑁+1&𝑃𝑎𝑁−1&…&𝑃𝑎1’ correspond to the same 

structure description characterized by 𝑁 + 1 property instances in the universe of 

discourse, while all state descriptions that are isomorphic to 

‘~𝑃𝑎𝑁+1&~𝑃𝑎𝑁−1&…&~𝑃𝑎1’ correspond to the same structure description 

characterized by 0 property instances in the universe of discourse. Thus, we have 

different structure description corresponding to 0,1, … ,𝑁 + 1 occurrences of 𝑃 and 
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the total number of structure descriptions is 𝜏 = 𝑁 + 2. To calculate the number 𝜁𝑘 of 

state descriptions that are isomorphic to 𝔙𝑘, let us take 𝑘 to denote the number of 

occurrences of 𝑃 in 𝔙𝑘, i.e., 𝑘 = 0,1, … ,𝑁 + 1. Then 𝜁𝑘 is the number of the different 

ways that 𝑁 individuals can form 𝑘-tuples, i.e., (
𝑁+ 1
𝑘

) =
(𝑁+1)!

𝑘!(𝑁+1−𝑘)!
. Thus, we find 

that  

 

𝔪∗(𝔙𝑘) =
𝑘! (𝑁+ 1− 𝑘)!

(𝑁+ 2)!
 

 

 

for 𝑘 = 0,1, … ,𝑁 + 1.  

The degree of confirmation of the hypothesis ℎ given evidence 𝑒 is  

 

𝔠∗(ℎ, 𝑒) =
𝔪∗(ℎ&𝑒)

𝔪∗(𝑒)
. 

 

Notice that ℎ&𝑒 is isomorphic to any state description 𝔙𝑁+1 and 

 

𝔪∗(ℎ&𝑒) = 𝔪∗(𝔙𝑁) =
(𝑁+ 1)!

(𝑁+ 2)!
=

1

𝑁+ 2
 

 

while ~ℎ&𝑒 is isomorphic to any state description 𝔙𝑁 and 

 

𝔪∗(~ℎ&𝑒) = 𝔪∗(𝔙𝑁) =
𝑁!

(𝑁+ 2)!
. 

 

As before, sentence 𝑒 is L-equivalent to (ℎ&𝑒) ∨ (~ℎ&𝑒) and  

 

𝔪∗(𝑒) = 𝔪∗(ℎ&𝑒)+ 𝔪∗(~ℎ&𝑒) =
𝑁!

(𝑁 + 1)!
=

1

𝑁+ 1
 

 

Thus,  

𝔠∗(ℎ, 𝑒) =
𝔪∗(ℎ&𝑒)

𝔪∗(𝑒)
=
𝑁+ 1

𝑁+ 2
. 

 

Using the same reasoning, we may calculate, more generally, the degree of 

confirmation of the hypothesis that the (𝑟 + 1)-th individual 𝑎𝑟+1 will exhibit 

property 𝑃, i.e., ℎ: ‘𝑃𝑎𝑟+1’given the evidence that 𝑟 individuals of the universe of 

discourse have exhibited so far the same property 𝑃, i.e. 𝑒 : ‘𝑃𝑎𝑟&…&𝑃𝑎1’, 
   

𝔠∗(ℎ, 𝑒) =
𝔪∗(ℎ&𝑒)

𝔪∗(𝑒)
=
𝑟 + 1

𝑁+ 2
. 

 

These results amount to the celebrated Laplace’s Rule of Succession, which in 

Carnap’s theory of inductive logic has become a theorem. 

 

c. The Continuum of Inductive Methods 

In the examples so far, we have examined three different regular 𝔠-functions: one 

determined by arbitrarily assigning weight to state descriptions in 𝔏3; the other two, 
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𝔠+, 𝔠∗, determined by assigning equal weight to state and structure descriptions, 

respectively, on the basis of the principle of indifference. There are many alternative 

ways to assign such a weight to the different possibilities and each one of them results 

in a different regular 𝔠-function yielding a different degree of confirmation 𝔠(ℎ, 𝑒) for 

a given hypothesis ℎ and evidence 𝑒 in a language system 𝔏. Thus, there are many 

different inductive methods, actually, a continuum of such possible methods (Carnap, 

1952). For a given language system each inductive method is characterized by the 

value of a non-negative real parameter 𝜆. For a given 𝜆 the degree of confirmation 

𝔠(ℎ, 𝑒) is fixed for any hypothesis ℎ and with respect to any evidence 𝑒 and any two 

inductive methods have the same 𝜆 only if they agree on the value of 𝔠(ℎ, 𝑒). 
To understand how the degree of confirmation is defined in terms of the 𝜆-

parameter, we need first to explain the concept of logical width of a property (1950: 

126-127). Consider any language system 𝔏𝑁 having 𝜋 unary atomic predicates. We 

may form molecular predicates by taking the conjunction of 𝜋 predicates which are 

either the atomic predicates or of their negations. In this way we form 𝜅 = 2𝜋 

molecular predicates (Q-predicates). Then any property 𝐹 expressible in 𝔏𝑁 is 

represented either by a Q-predicate or by a disjunction of two or more Q-predicates. 

Logical width characterizes the logical complexity of a property 𝐹. The greater the 

logical width of a property, the greater is the number of possible (non-contradictory) 

properties it admits. For example, the property 𝑃1 ∨ 𝑃2 is wider than 𝑃1 since 

property ~𝑃1&𝑃2 is admitted by the first but excluded by the second. Thus, the logical 

width of a contradictory property is 0 while the logical width of a property 

represented by a Q-predicate is 1. Any property 𝐹 that is expressed as a disjunction of 

Q-predicate has a logical width 𝜅 ≥ 𝑤 > 1 equal to the number of disjuncts. 

Moreover, the relative width 𝐹 is the ratio 𝑤/𝜅. Notice that the relative width varies 

from 0, for a contradictory property, through ½ , for any property represented by a 

atomic predicate, to 1 for a logically necessary property.  

Let 𝑒 be the sentence expressing that out of 𝑠 individuals examined, 𝑠𝐹 had 

property 𝐹 and ℎ be the hypothesis that a given individual different that those 

examined so far had also 𝐹, then the degree of confirmation 𝔠(ℎ, 𝑒) is 

 

𝔠(ℎ, 𝑒) = (
𝑠

𝑠 + 𝜆
)
𝑠𝐹
𝑠
+ (

𝜆

𝑠 + 𝜆
)
𝑤

𝜅
, 

 

where 𝑠𝐹 𝑠⁄  is the relative frequency of observed instances of the property 𝐹 and 𝜆 a 

non-negative real number (Burks, 1953). The relative frequency of observed 

instances, 𝑠𝐹 𝑠⁄ , is an empirical fact while the relative width of the property is a 

logical fact depending on the language system and the predicate that represents the 

property. Hence, the degree of confirmation is determined as a mixture of a logical 

factor and of an empirical factor (1952: 24): 

 

𝔠(ℎ, 𝑒) = (1 − 𝑎)
𝑠𝐹
𝑠
+ 𝑎

𝑤

𝜅
, 

 

where 𝑎 =
𝜆

𝑠+𝜆
. If no observation has taken place, i.e., 𝑠 = 0, then 𝔠(ℎ, 𝑒) =

𝑤

𝜅
, and the 

degree of confirmation is determined on logical grounds. As the number of 

observations increases relative frequency of observed instances acquires significance 

and the degree of confirmation tends toward 
𝑠𝐹
𝑠

 . Exactly how fast we learn from 

experience, that is how fast 𝔠(ℎ, 𝑒) tends to 
𝑠𝐹
𝑠

, depends on 𝜆. In the following table we 
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have summarized the degrees of confirmation that correspond to different 

characteristic values of 𝜆 

 

 

𝝀 𝖈(𝒉, 𝒆) 

𝟎 
𝑠𝐹
𝑠

 

𝜿 
𝑠𝐹 + 𝑤

𝑠 + 𝜅
 

𝝀 → ∞ 
𝑤

𝜅
 

 

 

For 𝜆 = 0, we have the straight rule which stipulates that the observed relative 

frequency is equal to the probability that an unobserved individual has the property in 

question. Carnap says that the straight rule is problematic since it yields complete 

certainty (𝔠 = 1), if all examined individuals are found to possess the relative property 

(𝑠𝐹 = 𝑠) – a conclusion that may be accepted if the size 𝑠 of the sample is quite large 

but not otherwise (1950: 227). The second row in our table (𝜆 = 𝜅) is better 

interpreted if we assume that our language system consists of one atomic unary 

predicate only. Then 𝑤 = 1 and 𝜅 = 2, and we get Laplace’s rule of succession, 

𝔠(ℎ, 𝑒) = 𝔠∗(ℎ, 𝑒). Finally, with the same assumptions about the language system, for 

𝜆 → ∞ the logical factor reigns and (ℎ, 𝑒) = 𝔠+(ℎ, 𝑒) =
1

2
 , as calculated for 

equiprobable state descriptions.  

How can we decide which of the uncountable infinity of inductive methods is the 

appropriate one? Carnap’s answer is based on two important elements: (a) adopting an 

inductive method is a matter of choice that we make; (b) this choice is made on a 

priori grounds. Carnap agreed with Burks’ suggestion to apply to induction the 

internal-external distinction concerning the adoption of frameworks (1963: 982). 

Thus, while the degree of confirmation for a given hypothesis on given evidence is an 

internal question, it presupposes the adoption of a 𝔠-function, the choice of which is 

an external one; i.e., it is raised outside any inductive system and has to do with the 

choice of a framework similar to the choice of a language system. Richard Jeffrey 

(1992: 28) pointed out that: 

 

Carnap counted the specification of 𝔠-functions among the semantical rules for 

languages. Choice of a language was a framework question, a practical choice that 

could be wise or foolish, and lucky or unlucky, but not true or false.  

 

The pragmatic (i.e., non-cognitive) nature of the scientist’s choice of an inductive 

method becomes apparent in the passage below:  

 

X may change this instrument [i.e., their inductive method] just as he changes a 

saw or an automobile, and for similar reasons. (Carnap 1952: 55) 

 

It is up to the scientists to make up their minds and to choose among them the one that 

they feel are the more appropriate for their purposes. They can change them as they 

change their automobiles!  

Assuming that a choice of an inductive method has been made and a particular 𝔠-
function has been defined, any statement of the sort “𝔠(ℎ, 𝑒) = 𝑝” for specified 

sentences ℎ, 𝑒, is analytic, if true (and contradictory, if false), i.e., their truth or falsity 
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rests on definition and pure logic. This fact raises additional problems regarding the 

justification of the applicability of the inductive methods to practical issues: “The 

question is”, says Salmon (1966:76), “How can statements that say nothing about any 

matters of fact serve as ‘a guide of life’?” The observation that non-trivial empirical 

content is introduced by the synthetic sentence 𝑒 expressing evidence of past 

experience, does not improve things very much. For, one may further require a 

justification of considering past evidence and logico-mathematical facts about the 

degree of a confirmation as a guide to predictions and our future conduct. On what 

grounds do we deem such a practice rational? Nevertheless, these last questions seem 

to get us outside the limits of any framework since they are reformulations of the 

external question about the choice of a particular 𝔠-function, and can be answered 

neither from reason nor from experience. 

Where does all this leave Carnap’s project? The project of specifying the inductive 

logic falls apart. There is no uniquely rational way to determine the relations between 

evidence and hypotheses. Instead, Carnap’s attitude seems to be captured by the 

following paraphrase of Chairman Mao’s famous dictum:  ‘Let a hundred inductive 

methods bloom’. But even if we were to argue that we end up with a plurality of 

inductive methods, they would still fall short of being inductive logics. As we saw, 

the c-function depends on the parameter  . But, as Howson and Urbach (1989: 55) 

have stated, the very idea of an adjustable parameter   “calls into question the 

fundamental role assigned to his systems of inductive logic by Carnap. If their 

adequacy is itself to be decided empirically, then the validity of whatever criterion we 

use to assess that adequacy is in need of justification, not something to be accepted 

uncritically”. 

 

5. Subjective Probability and Bayesianism 
a. Probabilities as Degrees of Belief 
Subjective theory is a theory of inductive probability proposed by the Cambridge 

Apostle F. P. Ramsey in his paper “Truth and Probability”, written in 1926 and 

published in 1931, and, independently, by the Italian mathematician, Bruno de Finetti, 

who proposed it somewhat later, in 1928, and published it in a series of papers in 

1930. In this conception, probability is the degree of belief of an individual at a given 

time. The inductive nature of the account is reflected in de Finetti’s (1972: 21) that: 

  

[t]he subjectivists … maintain that a probability evaluation, being but a measure of 

someone's beliefs, is not susceptible of being proved or disproved by the facts …

  

A major assumption of the theory is that beliefs, commonly conceived as 

psychological states, are measurable, otherwise as Ramsey put it “all our inquiry will 

be vain” (1926:166). Thus, one needs to specify a method of measuring belief to 

consider the sentence ‘the degree of belief of X, at time t, is p’ meaningful. Ramsey 

examined two such methods. The first one is based on the fact that the degree of 

belief is perceptible by its owner, since one ascribes different intensities of feelings of 

conviction to different beliefs that they hold. However, as Ramsey noted, we do not 

have strong feelings for things we take for granted, actually, such things are 

practically accompanied by no feeling; thus, this way of measuring degree of belief 

seems inadequate. The second method rests on the supposition that the degree of 

belief is a causal property and: 
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the difference [in the degree of belief] seems to me to lie in how far we should act 

on these beliefs (ibid: 170).  

 

To measure beliefs as bases for actions Ramsey (ibid: 172) suggested:  

 

to propose a bet and see what are the lowest odds which… [the agent] will accept. 

 

In a similar vein, de Finetti (1931) characterized probability “the psychological 

sensation of an individual” and also suggested to use bets to measure degrees of 

belief.  

A bet on a hypothesis ℎ, with betting quotient 𝑝, at stake 𝑆, 𝑏𝑒𝑡(ℎ, 𝑝, 𝑆), is defined 

by the following conditions:  

 

(a) if hypothesis ℎ is true, the gambler wins (1 − 𝑝)𝑆;  

(b) if hypothesis ℎ is false, the gambler loses 𝑝𝑆,  

where 𝑝 is any real number in the unit interval and 𝑆 any sum of money.  

We say that the odds in a bet on ℎ at stake  𝑆 are 𝑅:𝑄 whenever the betting quotient 

𝑝 = 𝑅/(𝑅 + 𝑄). 
 

𝒉 AGENT PAYS  AGENT RECEIVES NET PAYOFF FOR THE AGENT 

𝑻 𝑝𝑆 𝑆 (1 − 𝑝)𝑆 

𝑭 𝑝𝑆 0 −𝑝𝑆 

 

The actions that measure an agent’s degree of belief in a hypothesis ℎ are the 

buying and selling of a bet on ℎ. In particular, the degree of belief of an individual 𝑋 

in a hypothesis ℎ is a number 𝑝0  which, expressed in monetary values,  $𝑝0, is (i) the 

highest price 𝑋 is willing to buy a bet that returns $1 if ℎ is true, and $0 if ℎ is false, 

and, (ii) the lowest price, 𝑋 is willing to sell that same bet.  

To better understand this definition, consider the set of all bets on ℎ at stake $1. It 

can be characterized in terms of the betting quotients as follows:  

 
{𝑝 ∈ ℝ: 𝑏𝑒𝑡(ℎ, 𝑝, $1)} 

 

To buy any bet from this collection the bettor should pay $𝑝. But depending on  ℎ 

they are not willing to pay any amount of money; on the contrary they seek to pay the 

least possible. The definition assumes that the amount of money the agent is willing to 

pay to buy the bet is bounded from above and its least upper bound is $𝑝0. Similarly, 

the money an agent could earn from selling the bet is bounded from below and the 

greatest lower bound is also $𝑝0. This number 𝑝0 is the degree of belief of an agent in 

ℎ. 

On this view, the conditional degree of belief of an individual 𝑋 in a hypothesis ℎ 

given some statement 𝑒, 𝑏𝑋(ℎ|𝑒) = 𝑝0 is defined in terms of the following bet:  

 

(a) if hypothesis ℎ&𝑒  is true, the bettor wins $(1 − 𝑝0);  
(b) if hypothesis 𝑒  is false, the bettor wins $𝑝0 

 

The idea for this bet is that it is called off in case 𝑒  is false and the agent gets a refund 

of  $𝑝0. (Jeffrey 2004: 12) 

The degree of belief 𝑝0 of an individual 𝑋 in a hypothesis ℎ is confined within the 

unit interval. To see this, assume, first, that 𝑝0 < 0 and consider the agent selling a 
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bet to the bookie that pays $1 if ℎ is true, and $0 if ℎ is false, for $𝑝0. Independently 

of the truth-value of ℎ, this bet is a loss for the agent: the agent has a net gain of 

$(−1 + 𝑝0) < 0 in case ℎ is true and $𝑝0 < 0 in case ℎ is false. In a similar vein, if 

𝑝0 > 1, an agent buying a bet from the bookie that pays $1 if ℎ is true, and $0 if ℎ is 

false, for $𝑝, gains $(1 − 𝑝0) < 0 if ℎ is true, and $ − 𝑝0 < 0 if ℎ is false, and the bet 

is, again, a loss for the agent. Hence, if an agent assigns to any of their beliefs degrees 

that are either negative or greater than 1, they are exposed to a betting situation with 

guaranteed loss independently of the truth or the falsity of that belief. Such an 

unwelcome bet or set of bets which “will with certainty result in a loss” (de Finetti, 

1974: 87) for the agent is called Dutch book. It is conjectured that the term can be 

traced back to the introduction of the Lotto game in the Low Countries, at the 

beginning of the 16th century where in the so-called “Dutch Lotto”, the organizer had, 

in any event, a positive gain (de Finetti, 2008: 45). Hence, to avoid a Dutch book, one 

should confine degrees of belief within the interval [0,1].   
A degree of belief function 𝑏𝑋 is an assignment of degrees of belief of a person 𝑋’s 

beliefs as represented by propositions (or, classes of logically equivalent sentences, in 

a language dependent context): 

 
𝒮𝐿 ∋ ℎ ↦ 𝑏𝑋(ℎ) ∈ [0,1]. 

 

For an agent 𝑋 with an assignment of degrees of belief described by the function 𝑏𝑋, 

we may define the expected winnings of a 𝑏𝑒𝑡(ℎ, 𝑝, 𝑆) for X, as a convex combination 

of the gains and losses of the agent on this bet with coefficients determined by their 

degree of belief in ℎ : 

 

𝐸𝑊[ 𝑏𝑒𝑡(ℎ, 𝑝, 𝑆), 𝑋] = 𝑏𝑋(ℎ)𝑉(ℎ) + (1 − 𝑏𝑋(ℎ))𝑉(~ℎ). 

 

where 𝑉(ℎ) is the net payoff for the agent if ℎ is true and 𝑉(~ℎ), the net payoff if ℎ is 

false. To understand this concept, think of 𝑉(ℎ) and 𝑉(~ℎ) as the possible states in 

which an agent that their belief function assigns 1 and 0 to ℎ, respectively, expects to 

be found if the bet offered is accepted. Namely, an agent that is certain of the truth of 

ℎ, expects to gain 𝑉(ℎ) an agent that is certain of the falsity of ℎ, expects to gain 

𝑉(~ℎ) by accepting the bet.  If the agent’s belief function assigns any other number 

in the unit interval to ℎ, they will occupy an intermediate state. Geometrically, 𝑉(ℎ) 
and 𝑉(~ℎ) may be thought as the extremities of a line segment and any other state a 

point between these extremities. Next, assume that the agent is placed on the midpoint 

of the segment, equidistant from its extremities. Then the bet doesn’t give any 

prevalence beforehand to the truth or the falsity of the hypothesis for that particular 

agent and it is fair. If the agent’s belief function places them closer to either of the 

extremities, 𝑉(ℎ) or 𝑉(~ℎ), then the gives an unfair advantage for or against ℎ, for 

this agent. Thus, for 𝑏𝑋(ℎ) = 𝑝0, the expected winnings of a 𝑏𝑒𝑡(ℎ, 𝑝, 𝑆) for X is: 

 

(𝑝
0
− 𝑝)𝑆 

 

and it measures how much fair or unfair is the bet for that particular agent. In this 

understanding, no commitment to a probabilistic view of the belief function is 

required. It is sufficient to treat belief quantitatively, to consider the degree of belief 

on a hypothesis a number in the closed interval and to interpret the values 0 and 1 in 

terms of the belief in the falsity and truth of the hypothesis respectively.   
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Accordingly, we may now give the following definitions: 

  

• We call 𝑏𝑒𝑡(ℎ, 𝑝, 𝑆) a fair bet for 𝑋 if and only if 𝐸𝑊[ 𝑏𝑒𝑡(ℎ, 𝑝, 𝑆), 𝑋] =
0.  

• We call 𝑏𝑒𝑡(ℎ, 𝑝, 𝑆) advantageous for 𝑋 if and only if 

𝐸𝑊[ 𝑏𝑒𝑡(ℎ, 𝑝, 𝑆), 𝑋] > 0. 
• We call 𝑏𝑒𝑡(ℎ, 𝑝, 𝑆) disadvantageous for 𝑋 if and only iff 

𝐸𝑊[ 𝑏𝑒𝑡(ℎ, 𝑝, 𝑆), 𝑋] < 0.  

 

Notice that the Dutch book in which we would be vulnerable were we to consider 

degrees of belief outside the unit interval, is fair, since it is defined in terms of buying 

and selling 𝑏𝑒𝑡(ℎ, 𝑝
0
, 𝑆) – a fact that makes its bite even worse. 

  

b. Dutch Books 
Ramsey identified a connection between Dutch books and the laws of mathematical 

probability. In “Truth and Probability” we read that (1926: 182): 

 

If anyone’s mental condition violated these laws [of probability] … [h]e could 

have a book made against him by a cunning bettor and would then stand to lose 

in any event. 

 

And conversely, 

 

Having degrees of belief obeying the laws of probability implies a further 

measure of consistency, namely such a consistency between the odds acceptable 

on different propositions as shall prevent a book being made against you (1926: 

183). 

 

Instead of Ramsey’s ‘consistency’, de Finetti (1974: 87) has spoken of 

‘coherence’ of degrees of beliefs.  The degrees an agent assigns to his beliefs are said 

to be coherent : 

 

if among the combinations of bets which [y]ou have committed yourself to 

accepting there are none for which the gains are all uniformly negative. 

 

Thus, if an agent is not vulnerable to a Dutch book with betting quotients equal to 

their degrees of belief, the agent is said to have coherent degrees of belief. In addition, 

an agent has coherent degrees of belief if and only if their degrees of belief satisfy the 

axioms of probability. This is the celebrated Ramsey – de Finetti or Dutch-Book 

theorem: 

 

Let 𝑏𝑋: 𝒮𝐿⟶ℝ be a degree of belief function of a person 𝑋. If 𝑏𝑋 does not 

satisfy the axioms of probability, then there is a family of fair bets 

𝑏𝑒𝑡(ℎ𝑖 , 𝑝𝑖, 𝑆𝑖),  with ℎ𝑖 ∈ 𝒮𝐿 , 𝑝𝑖 = 𝑏𝑋(ℎ𝑖) and 𝑆𝑖 ∈ ℝ, for every 𝑖 = 1, … , 𝑛 (or 

∞)  which guarantees that the agent will result in an overall loss, 

independently of the truth-values of the hypotheses ℎ𝑖.  
  

The converse of that theorem has also been shown:  
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Let 𝑏𝑋: 𝒮𝐿⟶ℝ be a degree of belief function of a person 𝑋. If 𝑏𝑋 satisfies the 

axioms of probability, then there is no family of fair bets 𝑏𝑒𝑡(ℎ𝑖, 𝑝𝑖, 𝑆𝑖),  with 

ℎ𝑖 ∈ 𝒮𝐿 , 𝑝𝑖 = 𝑏𝑋(ℎ𝑖) and 𝑆𝑖 ∈ ℝ, for every 𝑖 = 1,… , 𝑛 which guarantees that 

the agent will result in an overall loss, independently of the truth-values of the 

hypotheses ℎ𝑖.  
  

We have already discussed the application of the Ramsey-de Finetti theorem in the 

case of violation of the axiomatically imposed constraint that probability values lie 

within the unit interval. The next example illustrates how an agent will experience an 

overall loss if they hold degrees of belief that do not comply with the finite additivity 

axiom.  

Consider the tossing of a die and assume that the degrees of belief assigned by a 

person 𝑋 to the beliefs that they will obtain: ‘6’ in a single toss is 𝑞; ‘3’ in a single 

toss is 𝑟; and, either ‘6’ or ‘3’ is 𝑘. Moreover, let 𝑘 < 𝑟 + 𝑞, i.e., finite additivity 

axiom is violated. Then we may consider the following family of fair bets, suggested 

to the agent:  

 

𝑏𝑒𝑡(′6′, 𝑞, 1), 𝑏𝑒𝑡(′3′, 𝑟, 1), 𝑏𝑒𝑡(′6′𝑜𝑟′3′, 𝑘, −1).  
 

The agent buys from the bookie 𝑏𝑒𝑡(′6′, 𝑞, 1) that pays $1, if “′6′ is obtained” is 

true, and $0, if false, for $𝑞.Next, the agent buys the second bet, 𝑏𝑒𝑡(′3′, 𝑟, 1), that 

pays $1, if “′3′ is obtained” is true, and $0, if false, for $𝑟. Finally, in the third bet, the 

agent sells to the bookie 𝑏𝑒𝑡(′6′𝑜𝑟′3′, 𝑘, −1) that pays $1, if “′6′ or ′3′  is obtained” 

is true, and $0 if false, for $𝑘. In the following table, is calculated the net gain for the 

agent in this betting sequence: 

 
“′𝟔′,” “′𝟑′,” “′𝟔′, OR ′𝟑′,” NET GAIN FOR THE AGENT 

T F T (1 − 𝑞) ⋅ 1 + (−𝑟) ⋅ 1 + (1 − 𝑘)(−1) = 𝑘 − (𝑟 + 𝑞) 
F T T (−𝑞) ⋅ 1 + (1 − 𝑟) ⋅ 1 + (1 − 𝑘)(−1) = 𝑘 − (𝑟 + 𝑞) 
F F F (−𝑞) ⋅ 1 + (−𝑟) ⋅ 1 + (−𝑘)(−1) = 𝑘 − (𝑟 + 𝑞) 

 

As we can see, this sequence of bets results in an overall loss for the agent. Thus, 

as the Ramsey-de Finetti theorem demands, an agent whose degree of belief function 

violates the axiom of finite additivity is exposed to a Dutch book.  

One could obtain a similar result for the violation of countable additivity axiom. In 

this case they need to employ a countable infinite family of bets. However, a criticism 

that follows such an assumption is that it is unrealistic for any agent to be engaged in 

infinitely many bets. (Jeffrey,2004: 8) 

There have been attempts to extend the requirement of coherence from the 

synchronic case, as expressed by the compliance of the degrees of belief with the 

axioms of probability theory, to diachronic coherence by stipulating rules for belief 

updating. Learning from experience requires that the agent should change their 

assignment of degree of belief (probability) on a given hypothesis in response to the 

result of experiment or observation. The simplest, and most common, rule for 

updating is the following: 

 

In the light of new evidence, the agent should update their degrees of beliefs by 

conditionalizing on this evidence.  
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Thus, assume that the belief function of a person 𝑋 before new evidence 𝑒 is acquired 

is 𝑏𝑋𝑜𝑙𝑑 and 𝑏𝑋𝑛𝑒𝑤 is the belief function after the acquisition of new evidence. The 

transition from the old degree of belief to the new one is governed by the rule:  

 
𝑏𝑋𝑛𝑒𝑤(ℎ) = 𝑏𝑋𝑜𝑙𝑑(ℎ|𝑒) 

 

where 𝑒 is the total evidence, and 𝑏𝑋𝑜𝑙𝑑(ℎ|𝑒) is the posterior probability as determined 

by Bayes’s Theorem if we identify the degree of belief function with the probability 

function.  

This form of conditionalization is called strict conditionalization and it takes the 

probability of the learned evidence to be unity, i.e., 𝑏𝑋𝑛𝑒𝑤(𝑒) = 1 . Jeffrey found out 

that certainty is a very restrictive condition that does not conform with the 

uncertainties of real empirical research in science and everyday life. To show that 

Jeffrey suggested the example of observing the color of a piece of cloth by 

candlelight. The agent gets the impression that the observed color is green, but they 

concede that it maybe blue or less probably violet. The experience causes as to change 

our degrees of belief in propositions about the color of the object but does not cause 

us to change them to 1. Hence, strict conditionalization is inapplicable for updating 

our degrees of belief. Jeffrey suggested another form of conditionalization that tackles 

the problem, known as Jeffrey-conditionalization (or, probability kinematics, as 

Jeffrey called it), which considers evidence as providing probabilities to a partition of 

our set of beliefs. In this case, the new degree of belief function is calculated in terms 

of the old one,  

 

𝑏𝑋𝑛𝑒𝑤(ℎ) = ∑ 𝑏𝑋𝑜𝑙𝑑(ℎ|𝑒𝑖)𝑝𝑖
𝑛
𝑖 , 

 

where {𝑒𝑖}𝑖=1
𝑛  is a partition of our set of beliefs consisting mutually exclusive and 

jointly exhaustive propositions and 𝑝𝑖 = 𝑏𝑋𝑛𝑒𝑤(𝑒𝑖) , 𝑖 = 1,… , 𝑛, are the probabilities 

assigned to propositions 𝑒𝑖 by new evidence. As before, 𝑏𝑋𝑜𝑙𝑑(ℎ|𝑒𝑖) is calculated as 

the posterior probability in Bayes’s Theorem.  

One difficulty with Jeffrey’s conditionalization is that while strict 

conditionalization provides an assurance to convergence to truth, Jeffrey’s 

conditionalization generally doesn’t. There is a family of theorems, known as 

convergence theorems, with the most well-known being that of Gaifman and Snir 

(1982), which claim that, under reasonable assumptions, the probability of a 

hypothesis conditional on available evidence converges to 1 in the limit of empirical 

research, if the hypothesis is true. These theorems provide a vindication of 

Bayesianism showing that it is guaranteed to find the truth eventually by applying 

successively strict conditionalization.  

Conditionalizing on the evidence is purely logical updating of degrees of belief. It 

is not ampliative. It does not introduce new content, nor does it modify the old one. It 

just assigns a new degree of belief to an old opinion. The justification for the 

requirement of conditionalization is supposed to be a diachronic version of the Dutch-

book theorem. It is supposed to be a canon of rationality (certainly a necessary 

condition for it) that agents should update their degrees of belief by conditionalizing 

on evidence. The penalty for not doing this is liability to a Dutch-book strategy: the 

agent can be offered a set of bets over time such that a) each of them taken 

individually will seem fair to them at the time it is offered; but b) taken collectively, 

they lead them to suffer a net loss, come what may. 
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c. Bayesian Induction  

In this context, induction rests on the degree of belief one assigns to a hypothesis 

given a body of confirmatory evidence and on the process of updating in the light of 

new evidence. Hence, the problem of justification of induction gives way to the 

problem of justifying conditionalization on the evidence. In general, Bayesian theories 

of confirmation maintain the following theses: 

 

(a) Belief is always a matter of degree; degrees of belief are probability values and 

degree of belief functions are probability functions. 

(b) Confirmation is a relation of positive relevance, viz., a piece of evidence confirms 

a hypothesis if it increases its probability;  

𝑒 confirms ℎ iff 𝑝(ℎ|𝑒) > 𝑝(ℎ), 
where 𝑝 is a probability function. 

Similarly, we may define disconfirmation of a hypothesis by a piece of evidence 

in terms of negative relevance (𝑝(ℎ|𝑒) < 𝑝(ℎ)), as well as neutrality of a 

hypothesis with respect to a piece of evidence in terms of irrelevance (𝑝(ℎ|𝑒) =
𝑝(ℎ)). 

(c) The relation of confirmation is captured by Bayes’s theorem which dictates the 

change of the degree of belief in a given hypothesis in the light of a piece of 

evidence.  

𝑝(ℎ|𝑒) =
𝑝(𝑒|ℎ)𝑝(ℎ)

𝑝(𝑒)
 , where 𝑝(ℎ), 𝑝(𝑒) > 0, 

(d) The only factors relevant to confirmation of a hypothesis are its prior probability 

𝑝(ℎ), the likelihood of the evidence given the hypothesis 𝑝(𝑒|ℎ); and the 

probability of the evidence 𝑝(𝑒). 
(e) The specification of the prior probability of (aka prior degree of belief in) a 

hypothesis is a purely subjective matter. 

(f) The only (logical-rational) constraint on an assignment of prior probabilities to 

several hypotheses should be that they obey the axioms of the probability calculus. 

(g) The reasonableness of a belief does not depend on its content; nor, ultimately, on 

whether the belief is made reasonable by the evidence. 

 

d. Too Subjective? 

 

In 1954, Savage discussed a criticism of subjective Bayesianism based on the idea that 

science or scientific method aims at finding out “what is probably true, by criteria on 

which all reasonable men agree.” (1954:67). By applying intersubjectively accepted 

criteria, scientific method is supposed to lead to an agreement between any two rational 

agents on the probability for the truth of a hypothesis given the same body of evidence. 

According to Savage this demand for intersubjectivity has its source either in 

considering probabilistic entailment as a generalization of logical entailment, or in 

considering probability an objective property of certain physical systems. Yet, the 

criticism goes, complete freedom in the choice of prior probabilities for a hypothesis 

by two agents may yield different posterior probabilities for that hypothesis given the 

same body of evidence. This fact compromises the desideratum of intersubjectivity of 

criteria since it makes room for the intrusion of idiosyncratic elements, non-cognitive 

values, or any other source of subjective preferences, reflected in the disagreement of 

the agents in the choice of priors, and, ultimately, in the value of posterior probability 

of a hypothesis. Hence, what is “probably true” is not evaluated by “criteria on which 
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all people agree”. In a nutshell, it is claimed that purely subjective prior probabilities 

fail to capture the all-important notion of rational or reasonable degrees of belief and 

that subjective Bayesianism is too subjective to offer an adequate theory of 

confirmation. 

In defense of subjective probability, Savage claims that although this view 

  

incorporates all the universally acceptable criteria for reasonableness in 

judgement… [these criteria] do not guarantee agreement on all questions among 

all honest and freely communicating people, even in principle (ibid), 

 

considering disagreements a non-distressful situation. Moreover, anticipating what later 

became known as convergence-to-certainty or merger-of-opinions theorems, he 

showed that: 

 

…in certain contexts any two opinions, provided that neither is extreme in a 

technical sense, are almost sure to be brought very close to one another by a 

sufficiently large body of evidence. (1954: 68; see also 46f)  

 

Yet, as Hesse (1975; see Earman 1992:143) objected, Savage’s argument makes 

assumptions that are valid for the flipping of a coin case but are not typically valid in 

scientific inference. Gaifman and Snir (1982) have shown important results which 

overcome the limitations of Savage’s account. They have shown (Thm. 2.1) that for an 

infinite sequence of empirical questions, 𝜑1,…, 𝜑𝑛, …, formulated in a given language 

that satisfies certain conditions:  

• Convergence-to-certainty: The limiting probability of a true sentence 𝜓 in that 

language, given all empirical evidence collected in our world 𝑤,  in response 

to empirical questions stated, 𝜑1
𝑤, … , 𝜑𝑛

𝑤, …, equals to 1, lim
𝑛→∞

Pr (𝜓|&𝑖≤𝑛𝜑𝑖
𝑤) =

1. For a false proposition, the respective probability is 0,  

lim
𝑛→∞

Pr (𝜓|&𝑖≤𝑛𝜑𝑖
𝑤) = 0. 

• Merger-of-opinions: The distance between any two probability functions that 

agree to assign probability 0 to the same sentences, i.e., they are equally 

dogmatic, converges to 0, in the limit of empirical research, i.e., 

lim
𝑛→∞

𝑠𝑢𝑝𝜓|Pr1 (𝜓|&𝑖≤𝑛𝜑𝑖
𝑤) − Pr2 (&𝑖≤𝑛𝜑𝑖

𝑤)| = 0. 

Merger-of-opinions theorem is supposed to mitigate the excessive subjectivity of 

Bayesianism in the choice of prior probabilities: the actual values assigned to prior 

probabilities do not matter much since they ‘wash out’ in the long run.  

Unfortunately, several criticisms of the theorem showed that the objection of 

subjectivism is not fully addressed. Let us briefly review some of these criticisms: 

The first objection is related to the asymptotic character of convergence and merging 

and the fact that the speed of convergence is unknown. The results do not apply to the 

divergences of opinion induced by small and medium-sized sets of evidence that have 

practical importance. The second objection is related to the language-dependent 

nature of the theorems restricting them to cases in which the predicates of the 

language are fixed. The theorems cannot guarantee washing out the priors assigned by 

agents in different linguistic contexts, as before and after a scientific revolution.  

An important criticism stems from the fact that convergence in the theorems is 

obtained almost everywhere, i.e., for all worlds 𝑤, the actual world included, which 

belong to some set of possible worlds with probability 1. In the authors’ own words:  
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… with probability 1, two persons holding mutually nondogmatic initial views 

will, in the long run, judge similarly… Also the convergence is guaranteed 

with probability 1, where "probability" refers to the presupposed prior. (I) and 

(II) [referring to the two parts of the theorem] form an "inner justification" but 

they do not constitute a justification of the particular prior.   

So, the theorem guarantees convergence to truth and merging of opinions in every 

world except for some pathological cases that form small sets of worlds of measure 

zero. But who decides what those sets of worlds of measure zero would be? The 

Bayesian agent themselves through the choice of priors who is compelled to assign 

probability zero to ‘unpleasant’ scenarios. On these grounds, Earman claims that the 

“impressiveness of these results disappears in the light of their narcissistic character… 

‘almost surely’ sometimes serves as a rug under which some unpleasant facts are 

swept” (1992:147). 

Extending on this criticism, Belot (2013; 2017) has argued that in problems of 

convergence to truth, there are typical cases – their typicality being defined in a 

topological sense without measure-theoretic presuppositions – in which convergence 

to truth is unsuccessful, a fact that a Bayesian agent is bound to ignore by assigning 

prior probability zero to such cases. Thus, Belot, concludes, convergence – merger 

theorems “constitute a real liability for Bayesianism by forbidding a reasonable 

epistemological modesty” (2013)  

Belot’s arguments have prompted a variety of responses: some philosophers were 

critical of Belot’s topological considerations as being irrelevant to probability theory 

(Cisewski et al. 2018; Huttegger 2015). Others focused on imprecise probabilities and 

finitely additive probabilities to escape the charge of immodesty (Weatherson 2015; 

Elga 2016; Nielsen and Stewart 2019). Huttegger (2021) has shown using non-standard 

analysis that “convergence to the truth fails with (non-infinitesimal) positive 

probability for certain hypotheses … [a fact] that creates a space for modesty within 

Bayesian epistemology.” As regards the countable additivity of the probability 

function, convergence-to-certainty and merger-of opinions theorem relies essentially 

on this axiom. Prominent subjective Bayesians, on the other hand, such as de Finetti 

and Savage, explicitly reject countable additivity axiom despite its theoretical 

fecundity. Yet Savage, as mentioned above, has explored the possibility of theorems 

that despite their shortcomings attempt to mitigate the extreme subjectivism of 

Bayesianism. Recently, Nielsen (2021) has shown that there are uncountably many 

merely finitely additive probabilities that converge to the truth almost surely and in 

probability. As a general comment, we would say that the area convergence and merger 

theorems seems to have many open problems to capture the interest of researchers.  

  

e. Some Success Stories 

Bayesian theory has a record of successful justifications of some important common 

intuitions about confirmation – such as the belief that a theory is confirmed by its 

observational consequences or the belief that a theory is better confirmed if subject to 

strict tests – and it has provided a solution to the famous ‘raven paradox’.  

It is straightforward to show that hypotheses are confirmed by their consequences. 

Assume that ℎ ⊢ 𝑒, then the likelihood of 𝑒 given ℎ is 𝑝(𝑒|ℎ) = 1 and according to 

Bayes theorem, 𝑝(ℎ|𝑒) =
𝑝(𝑒|ℎ) 𝑝(ℎ)

𝑝(𝑒)
 = 

 𝑝(ℎ)

𝑝(𝑒)
> 𝑝(ℎ), given that 𝑒 is not trivially true 

(𝑝(𝑒) < 1); hence, 𝑒 confirms ℎ. This result justifies the inference of the truth of a 

hypothesis on the basis of its observational consequences as the hypothetico-

deductive method of confirmation suggests. Although the inference commits the 
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formal fallacy of affirming the consequent, if considered inductively, through the 

lenses of Bayes’s theorem, it is fully justified and the confirmatory nature of the 

hypothetico-deductive method is explained. This is what Earman recognized as an 

important “success story” of the Bayesian approach (1992: 233)  

Another common methodological intuition that may be justified on Bayesian 

grounds is related to the scientific practice of subjecting a hypothesis to severe tests 

on the basis of improbable consequences. As Deborah Mayo (2018: 14), following 

Popper, suggested in her Strong Severity Principle: 

  

We have evidence for a claim C just to the extent it survives a stringent 

scrutiny. If C passes a test that was highly capable of findings flaws or 

discrepancies from C, and yet none or few are found, the passing result, x, is 

evidence for C.  

 

Now, as before, consider a logical consequence 𝑒 of a hypothesis ℎ. i.e., ℎ ⊢ 𝑒 . A 

severe test of  ℎ would be one in which   𝑝(~𝑒) is high and, consequently,  𝑝(𝑒) is 

low. In this case 𝑒 would be evidence for ℎ. Hence, a necessary condition for 

collecting evidence for a hypothesis according to the aforementioned principle, would 

be to test its improbable consequences.   Indeed, following Bayes’s theorem: 

  

𝑝(ℎ|𝑒) =
𝑝(𝑒|ℎ) 𝑝(ℎ)

𝑝(𝑒)
 = 

 𝑝(ℎ)

𝑝(𝑒)
. 

 

Thus, the more improbable the consequence 𝑒 is, the greater the degree of 

confirmation, as measured by the ratio 
𝑝(ℎ|𝑒)
𝑝(ℎ)

, is.  

Another piece in the collection of trophies of the Bayesian account is the resolution 

of the ravens paradox. This is a paradox of confirmation, first noted by Carl Hempel, 

which took its name from the example that Hempel used to illustrate it viz., all ravens 

are black. The paradox emerges from the impossibility of having jointly satisfied 

three intuitively compelling principles of confirmation. The first is Nicod’s principle 

[named after the French philosopher Jean Nicod]: a universal generalization is 

confirmed by its positive instances. So, that all ravens are black is confirmed by the 

observation of black ravens. Second, the principle of logical equivalence: if a piece of 

evidence confirms a hypothesis, it also confirms its logically equivalent hypotheses. 

Third, the Principle of relevant empirical investigation: hypotheses are confirmed by 

investigating empirically what they assert.  

To set up the paradox, take the hypothesis ℎ: All ravens are black. The hypothesis 

ℎ′: All non-black things are non-ravens is logically equivalent to ℎ. A positive 

instance of ℎ′ is a white piece of chalk. Hence, by Nicod’s condition, the observation 

of the white piece of chalk confirms ℎ′. By the principle of equivalence, it also 

confirms ℎ, that is that all ravens are black. But then the principle of relevant 

empirical investigation is violated. For, the hypothesis that all ravens are black is 

confirmed not by examining the colour of ravens (or of any other birds) but by 

examining seemingly irrelevant objects (like pieces of chalk or red roses). So at least 

one of these three principles should be abandoned, if the paradox is to be avoided.  

To resolve the ravens paradox, a Bayesian may show that there is no problem with 

accepting all three principles of confirmation since the degree of confirmation 

conferred on the hypothesis ℎ by an instance of a non-raven-non-black object is 

negligible in comparison with how much the hypothesis is confirmed by an instance 
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of a black object.[According to Howson and Urbach (2006: 100) a Bayesian analysis 

could also challenge the adequacy of Nicod’s criterion as a universal principle of 

confirmation.] 

 

To see that consider hypotheses ℎ: ∀𝑥(𝑅𝑥 → 𝐵𝑥) and ℎ′: ∀𝑥(~𝐵𝑥 → ~𝑅𝑥) and 

evidence 𝑒: 𝑅𝑎&𝐵𝑎 and 𝑒′:~𝐵𝑎&~𝑅𝑎 which are positive instances of ℎ, ℎ′ 
respectively. We calculate the ratio 𝑝(ℎ|𝑒)/𝑝(ℎ|𝑒′) which according to Bayes’s 

theorem and the easily verifiable equality of likelihoods of 𝑒 and 𝑒′ given ℎ, 𝑝(𝑒|ℎ) =

𝑝(𝑒′|ℎ), is 
𝑝(ℎ|𝑒)

𝑝(ℎ|𝑒′)
=

𝑝(𝑒)

𝑝(𝑒′)
 . But 𝑝(𝑒′)>> 𝑝(𝑒) because there are very many more things 

which are non-Black and non-Ravens than Black Ravens. Hence, 𝑝(ℎ|𝑒) ≫ 𝑝(ℎ|𝑒′), 
i.e 𝑒 confirms ℎ a lot more than 𝑒′ confirms ℎ′.  

We are closing this presentation of subjective probability and Bayesian 

confirmation theory by referring to what has become known as the old evidence 

problem. The problem has been identified for the first time by Glymour (1980) and it 

underlines a potential conflict between Bayesianism and scientific practice. Suppose 

that a piece of evidence 𝑒 is already known (i.e., it is an old piece of evidence relative 

to the hypothesis ℎ under test). Its probability, then, is equal to unity, 𝑝(𝑒) = 1. Given 

Bayes’s theorem, it turns out that this piece of evidence does not affect at all the 

posterior probability, 𝑝(ℎ|𝑒), of the hypothesis given the evidence; the posterior 

probability is equal to the prior probability, i.e., 𝑝(ℎ|𝑒) = 𝑝(ℎ). This, it is argued, is 

clearly wrong since scientists typically use known evidence to support their theories. 

This fact is demonstrated by the use of the anomalous precession of Mercury’s 

perihelion, discovered in the nineteenth century, as confirming evidence for Einstein’s 

General Theory of Relativity. Therefore, the critics conclude, there must be something 

wrong with Bayesian confirmation. Some Bayesians have replied by adopting a 

counterfactual account of the relation between theory and old evidence (Howson and 

Urbach 2006: 299). Suppose, they argue, that 𝐾 is the relevant background knowledge 

and 𝑒 is an old (known) piece of evidence—that is, 𝑒 is actually part of 𝐾. In 

considering what kind of support 𝑒 confers on a hypothesis ℎ, we subtract 

counterfactually the known evidence 𝑒 from the background knowledge 𝐾. We 

therefore presume that 𝑒 is not known and ask: what would the probability of 𝑒 given 

𝐾\{𝑒}? This will be less than one; hence, the evidence 𝑒 can affect (that is, raise or 

lower) the posterior probability of the hypothesis. 
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6. Appendices 

a. Lindenbaum algebra and probability in sentential logic. 
In this appendix we show how one can assign probabilities, originally defined in set-

theoretic framework, to sentences in the language of sentential logic, 𝐿. We formulate 

Kolmogorov’s axioms of probability for sentences and some important theorems.  

In particular, consider the set of all well-formed formulas (wffs) of 𝐿 and define for 

every wff 𝜙 the equivalence class: 

 
[𝜙] = {𝜓:⊢𝐿 𝜙 ≡ 𝜓}. 

 

In the set of all equivalence classes 𝒮𝐿, we define set-theoretic operations that 

correspond to the sentential connectives of the language. Thus, for every two wffs 

𝜙, 𝜓: 

 
[𝜙] ∪ [𝜓] = [𝜙 ∨𝜓] 
[𝜙] ∩ [𝜓] = [𝜙 ∧𝜓] 

[𝜙]𝑐 = [~𝜙] 
[⊥] =  ∅ 

[𝑡] = {wffs of 𝐿} 
 

where “⊥” designates a contradiction and “𝑡” a tautology. This way constructed, the 

set of all equivalence classes, 𝒮𝐿, is a field (and a Boolean algebra) (see section 1a), 

and it is called Lindenbaum algebra (Hailperin 1986: 30ff.). However, since in the 

language of sentential logic, infinitary operations, like 𝜙1 ∨…∨ 𝜙𝑛 ∨… , cannot be 

applied to wffs 𝜙𝑖 to produce other wffs, we cannot define in 𝒮𝐿 the countably infinite 

union of classes of wffs. As a consequence, 𝒮𝐿 is not a σ-field and the probability 

function that we are about to define does not satisfy countable additivity. So, this is an 

account of elementary probability theory. To discuss the full axiomatic apparatus of 

probability theory one needs to work in richer languages, which for present purposes 

is not deemed necessary.  

So, we can define a probability function 𝑝 that satisfies Kolmogorov’s axioms (i)-

(iii) on 𝒮𝐿 and assign to each singular sentence of the language 𝐿 the probability value 

of its equivalence class. Thus, for any sentences 𝑎, 𝑏 and a tautotology 𝑡 of 𝐿: 

  

i. 𝑝(𝑎) ≥ 0; 

ii. 𝑝(𝑡) = 1 ;  

iii. 𝑝(𝑎 ∨ 𝑏) = 𝑝(𝑎) + 𝑝(𝑏), where 𝑎 ⊢𝐿 ~𝑏.  

 

As for the conditional probability of a sentences 𝑎 given the truth of a sentence 

sentences 𝑏, we have:  

 

𝑝(𝑎|𝑏) =
𝑝(𝑎 ∧ 𝑏)

𝑝(𝑏)
, 𝑝(𝑏) ≠ 0. 

 

It is obvious from the discussion above that logically equivalent sentences have 

equal probability values: 

 

if ⊢𝐿 𝑎 ≡ 𝑏, then  𝑝(𝑎) = 𝑝(𝑏). 
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We conclude this appendix with some useful theorems of the probability calculus 

which we state in sentence-based formalism, without proof:  

 

1. The sum of the probability of a sentence and of its negation is 1: 

𝑝(~𝑎) = 1 − 𝑝(𝑎). 
2. Contradictions (⊥) have zero probability:  

𝑝(⊥) = 0. 

3. The probability function respects the entailment relation: 

if 𝑎 ⊢𝐿 𝑏, then  𝑝(𝑎) ≤ 𝑝(𝑏). 
4. Probability values range between 0 and 1: 

0 ≤ 𝑝(𝑎) ≤ 1. 

5. Finite Additivity Condition: 

𝑝(𝑎1 ∨ …∨ 𝑎𝑁) = 𝑝(𝑎1) + ⋯+ 𝑝(𝑎𝑁),    𝑎𝑖 ⊢𝐿 ~𝑎𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑁. 

Corollary:  

If ⊢𝐿 𝑎1 ∨…∨ 𝑎𝑁 and 𝑎𝑖 ⊢𝐿 ~𝑎𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑁, 1 = 𝑝(𝑎1) + ⋯+ 𝑝(𝑎𝑁). 

6. Theorem of total probability: 

If 𝑝(𝑎1 ∨ …∨ 𝑎𝑁) = 1, and 𝑎𝑖 ⊢𝐿 ~𝑎𝑗, 𝑖 ≠ 𝑗, then 𝑝(𝑏) = 𝑝(𝑏 ∧ 𝑎1) + ⋯+

𝑝(𝑏 ∧ 𝑎𝑁), for any sentence 𝑏. 

Or in terms of conditional probabilities:  

If 𝑝(𝑎1 ∨ …∨ 𝑎𝑁) = 1, 𝑎𝑖 ⊢𝐿 ~𝑎𝑗, 𝑖 ≠ 𝑗, and 𝑝(𝑎𝑖) > 0 then 𝑝(𝑏) =

𝑝(𝑏|𝑎1)𝑝(𝑎1) + ⋯+ 𝑝(𝑏|𝑎𝑁)𝑝(𝑎𝑁), for any sentence 𝑏.  

Corollary 1:  

If ⊢𝐿 𝑎1 ∨…∨ 𝑎𝑁 and 𝑎𝑖 ⊢𝐿 ~𝑎𝑗, 𝑖 ≠ 𝑗, then 𝑝(𝑏) = 𝑝(𝑏 ∧ 𝑎1) + ⋯+

𝑝(𝑏 ∧ 𝑎𝑁). 
Corollary 2:  

𝑝(𝑏) = 𝑝(𝑏|𝑐)𝑝(𝑐) + ⋯+ 𝑝(𝑏|~𝑐)𝑝(~𝑐), for any sentence 𝑐, 𝑝(𝑐) > 0. 

7. Bayes’s Theorem. The famous theorem that took its name after the eighteenth-

century clergyman Thomas Bayes. 

• First form (Thomas Bayes): 

𝑝(ℎ|𝑒) =
𝑝(𝑒|ℎ)𝑝(ℎ)

𝑝(𝑒)
 , where 𝑝(ℎ), 𝑝(𝑒) > 0, 

where 𝑝(ℎ|𝑒) is called posterior probability and expresses the probability of 

the hypothesis ℎ conditional on the evidence 𝑒; 𝑝(𝑒|ℎ) is called likelihood of 

the hypothesis and expresses the probability of the evidence conditional on 

the hypothesis; 𝑝(ℎ) is called prior probability of the hypothesis; and 𝑝(𝑒) is 

the probability of the evidence. 

• Second form (Pierre Simon Laplace): 

If 𝑝(ℎ1 ∨ …∨ ℎ𝑁) = 1 and ℎ𝑖 ⊢𝐿 ~ℎ𝑗, 𝑖 ≠ 𝑗, and 𝑝(ℎ𝑖), 𝑝(𝑒) > 0 then 

𝑝(ℎ𝑘|𝑒) =
𝑝(𝑒|ℎ𝑘)𝑝(ℎ𝑘)

∑ 𝑝(𝑒|ℎ𝑖)𝑝(ℎ𝑖)
𝑁
𝑖=1

 

• Third form: 

 

𝑝(ℎ|𝑒) =
𝑝(ℎ)

𝑝(ℎ) +
𝑝(𝑒|~ℎ)
𝑝(𝑒|ℎ)

 𝑝(~ℎ)
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b. A sketch of proof for Laplace’s Rule of Succession 
Assume that we want to calculate the probability that the sun will rise tomorrow given 

that the sun has risen for the past 𝑁 days. We have observation data about the sunrise 

in the past 𝑁 days but the probability 𝑞 of the sunrise is unknown. By application of 

the principle of indifference, we claim that it is equally likely that the probability of 

sunrise be any number 𝑞 ∈ [0,1]. Hence, the distribution of probability values of 

sunrise is uniform. 

We take the sample space to consist of (N+2)-ples of the following type: 

 

< 𝑆, 𝑆, … , 𝐹,… , 𝑆⏞        
𝑁+1

, 𝑞 >, 
 

where 𝑆, 𝐹 stand for ‘Success’ and ‘Failure’ of the sunrise, respectively, and 𝑞 denotes 

a possible value for the probability of the sun rising.  

The subset of the sample space 

  

𝐸 = {< 𝑆,… , 𝑆⏞    
𝑁

, 𝑥, 𝑞 > |𝑥 ∈ {𝑆, 𝐹} 𝑎𝑛𝑑 𝑞 ∈ [0,1]}, 

 

is a random event consistent with observations of the sun rising in the past 𝑁 days, no 

matter what is going to happen in the (𝑁 + 1) day or what the probability 𝑞 of the 

sunrise is.  

Since, parameter 𝑞 takes real values we should not ask what the probability of a 

given value 𝑘 of the parameter 𝑞 is, but what the probability of 𝑞 to be found within a 

given interval is: 

 

𝑝(𝑞 ≤ 𝑘|𝐸). 
 

To calculate this probability, we first apply Bayes’ rule: 

 

𝑝(𝑞 ≤ 𝑘|𝐸) =
𝑝(𝑞 ≤ 𝑘) ⋅ 𝑝(𝐸|𝑞 ≤ 𝑘)

𝑝(𝐸)
 

 

Since all values of 𝑞 in [0,1] are equiprobable:  

 

𝑝(𝑞 ≤ 𝑘) = 𝑘. 
 

Since the sequence of past sunrises is a sequence of independent trials, i.e., 

whether the sun has risen or not in a given day does not influence the rising of the sun 

in subsequent days:  

𝑝(𝐸|𝑞 ≤ 𝑘) =
𝑘𝑁

𝑁 + 1
 

and  

𝑝(𝐸) =
1

𝑁 + 1
 

Hence:  

 

𝑝(𝑞 ≤ 𝑘|𝐸) = 𝑘𝑁+1. 
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From here, we can calculate the probability density function for 𝑞 = 𝑘 conditional on 

𝐸: 

𝑓(𝑘) = (𝑁 + 1)𝑘𝑁. 
 

To yield the probability of the sun to rise in the (𝑁 + 1) day, given that it has risen 

in the last 𝑁 days, no matter what the probability of sunrise might be is given by the 

following integral:  

 

∫ 𝑘𝑓(𝑘)𝑑𝑘
1

0
=
(𝑁+ 1)𝑘𝑁+2

𝑁+ 2
|

0

1

=
𝑁+ 1

𝑁+ 2
. 

 

 

c. The Mathematics of Keynes’s Account of Pure Induction 
 

Consider a generalization ℎ: "𝑎𝑙𝑙 𝐴 𝑖𝑠 𝐵" and 𝑛 positive instances 𝑒𝑖: "𝑡ℎ𝑖𝑠 𝐴 𝑖𝑠 𝐵" , 
𝑖 = 1, … , 𝑛 that follow logically from ℎ, i.e., ℎ ⊢ 𝑒𝑖. Let 𝑝(ℎ|𝐾) the prior to any 

evidence probability relative to background knowledge 𝐾. Background knowledge is 

understood as the body of evidence which is related to the truth of the hypothesis with 

the exception of the evidence that are being considered explicitly. If 𝑛 positive 

instances 𝑒𝑖: "𝑡ℎ𝑖𝑠 𝐴 𝑖𝑠 𝐵" , 𝑖 = 1,… , 𝑛 and no negative instances have been observed, 

the posterior probability of ℎ is 𝑝(ℎ|𝑒1&…&𝑒𝑛&𝐾). 
To justify inductive inference, Keynes claims, we need to find the conditions on 

which the posterior probability increases with the accumulation of positive instances 

and the absence of negative instances so that the inductive argument is strengthened 

and in the limit of empirical investigation, hypothesis ℎ can be inferred with certainty 

on the basis of empirical evidence: 

 

lim
𝑛→∞

𝑝(ℎ|𝑒1&…&𝑒𝑛&𝐾) = 1. 

 

From Bayes’s theorem we have:  

𝑝(ℎ|𝑒1&…&𝑒𝑛&𝐾) =
𝑝(ℎ|𝐾) 𝑝(𝑒1&…&𝑒𝑛|ℎ&𝐾)

𝑝(𝑒1&…&𝑒𝑛|𝐾)
. 

 

Since ℎ ⊢ 𝑒𝑖, 𝑖 = 1,… , 𝑛: 

  

𝑝(𝑒1&…&𝑒𝑛|ℎ&𝐾) = 1    (1) 
 

𝑝(ℎ|𝑒1&…&𝑒𝑛&𝐾) =
𝑝(ℎ|𝐾) 

𝑝(𝑒1&…&𝑒𝑛|𝐾)
 (2) 

 

From the law of total probability, we have: 

 

𝑝(𝑒1&…&𝑒𝑛|𝐾) =  𝑝(𝑒1&…&𝑒𝑛|ℎ&𝐾)𝑝(ℎ|𝐾) + 𝑝(𝑒1&…&𝑒𝑛|~ℎ&𝐾)𝑝(~ℎ|𝐾) 
 

and by (1), 

 

𝑝(𝑒1&…&𝑒𝑛|𝐾) =  𝑝(ℎ|𝐾) + 𝑝(𝑒1&…&𝑒𝑛|~ℎ&𝐾)𝑝(~ℎ|𝐾)  (3) 
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Hence, by (2) and (3): 

𝑝(ℎ|𝑒1&…&𝑒𝑛&𝐾) =
𝑝(ℎ|𝐾) 

 𝑝(ℎ|𝐾) + 𝑝(𝑒1&…&𝑒𝑛|~ℎ&𝐾)𝑝(~ℎ|𝐾)
   

 

If lim
𝑛→∞

𝑝(𝑒1&…&𝑒𝑛|~ℎ&𝐾)

𝑝(ℎ|𝐾)
= 0, the requested condition of asymptotic certainty, 

lim
𝑛→∞

𝑝(ℎ|𝑒1&…&𝑒𝑛&𝐾) = 1, is satisfied. Since 𝑝(ℎ|𝐾) is the prior probability of the 

hypothesis which is independent of the evidence accumulated, it is a fixed number.  

Hence, the antecedent of the aforementioned conditional can be split into the 

following two conditions: 

 

𝑝(ℎ|𝐾) ≠ 0  (4)  
 

and  

lim
𝑛→∞

𝑝(𝑒1&…&𝑒𝑛|~ℎ&𝐾) = 0  (5) 

 

Condition (5) can be analyzed in terms of the probability of a positive instance 𝑒𝑗 

given 𝑗 − 1 positive instances for ℎ, 𝑒1&…&𝑒𝑗−1, and that ℎ is false: 

 

𝑝(𝑒𝑗|𝑒1&…&𝑒𝑗−1&~ℎ&𝐾) = 𝑞𝑗,   𝑗 = 2, … , 𝑛 

𝑝(𝑒1|~ℎ&𝐾) = 𝑞1. 
 

The probability of 𝑛 positive instances and no negative instances given that ℎ is 

false is:  

 

𝑝(𝑒1&…&𝑒𝑛|~ℎ&𝐾) = 𝑞1 ∙ … ∙ 𝑞𝑛. 
 

Let 1 > 𝑀𝑛 = 𝑚𝑎𝑥{𝑞1, … , 𝑞𝑛} then 𝑝(𝑒1&…&𝑒𝑛|~ℎ&𝐾) ≤ 𝑀𝑛
𝑛. The sequence 

{𝑀𝑛}𝑛∈ℕ  is bounded. If = 𝑠𝑢𝑝𝑛∈ℕ 𝑀𝑛 , 0 < 𝑀 < 1, then:  

 

for every 𝑛 ∈ ℕ, 𝑝(𝑒1&…&𝑒𝑛|~ℎ&𝐾) ≤ 𝑀𝑛
𝑛 < 𝑀𝑛 

and (5) follows: 

 

lim
𝑛→∞

𝑝(𝑒1&…&𝑒𝑛|~ℎ&𝐾) ≤ lim
𝑛→∞

𝑀𝑛 = 0 . 

 

By contraposition we infer that if condition (5) is not satisfied, {𝑀𝑛}𝑛∈ℕ  is not 

bounded by any number 𝑀, 0 < 𝑀 < 1. Thus, for every 𝑀 there is a 𝑛0 ∈ ℕ such that 

𝑀𝑛0 > 𝑀. Since 𝑀𝑛0 = 𝑚𝑎𝑥{𝑞1, … , 𝑞𝑛0}, we infer that for every 𝑀 there is a 𝑘 ∈

ℕ,  𝑘 < 𝑛0, such that:  

 

1 > 𝑝(𝑒𝑘|𝑒1&…&𝑒𝑘−1&~ℎ&𝐾) = 𝑞𝑘 > 𝑀, 
and 

 

lim
𝑘→∞

𝑝(𝑒𝑘|𝑒1&…&𝑒𝑘−1&~ℎ&𝐾) = 1. (6) 

 

Hence, if (5) is false then (6). But it is reasonable to demand that a negative 

instance of ℎ, ~𝑒𝑘, should have non-zero probability no matter how many positive 
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instances have been observed given the falsity of ℎ. Thus, Keynes (1921: 275) 

suggested that (6) is false:  

 

[given that] the generalisation is false, a finite uncertainty as to its conclusion 

being satisfied by the next hitherto unexamined instance which satisfies its 

premiss. 

 

Or, as Russell commented referring to condition (5), “[i]t is difficult to see how 

this condition can fail in empirical material.” (1948: 455). 

Keynes justified the second condition, (4), by applying the principle of limited 

independent variety and the principle of indifference (see sections 3.a.1, 3.a.2). 

According to the principle of limited independent variety, qualities are classified into 

a finite number of groups so that two qualities that belong in the same group have the 

same extension, i.e., they are satisfied by the same individuals, and, in this sense, they 

are equivalent. More precisely, [𝐴] is the set of all qualities that are equivalent to 𝐴; it 

includes all qualities 𝐵 ∈ [𝐴] which (∀𝑥)(𝐴𝑥 ≡ 𝐵𝑥). Thus, generalization ℎ is 

entailed logically by the assumption that 𝐴, 𝐵 are equivalent properties. Moreover, the 

principle of limited variety requires that the number of independent qualities that are 

inequivalent is finite. Hence, if 𝑛 is the number of independent qualities by the 

principle of indifference we conclude that the probability of any two properties 𝐴, 𝐵 to 

belong in the same group is 1/𝑛. Since, ℎ is a logical consequence of this fact, by a 

well-known theorem in probability theory (see section 1.a),  

 

𝑝(ℎ|𝐾) ≥
1

𝑛
 , 𝑛 fixed counting number  

 

But this is exactly what the demand for finite prior probability, condition (4), requires. 
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